Publications: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 343: | Line 343: | ||
# F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, ''Entropy'' '''24''', 458 (2022) | # F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, ''Entropy'' '''24''', 458 (2022) | ||
#: [https://doi.org/10.3390/e24040458 OxDNA to study species interactions] ([https://arxiv.org/abs/2202.05653 arXiv]) | #: [https://doi.org/10.3390/e24040458 OxDNA to study species interactions] ([https://arxiv.org/abs/2202.05653 arXiv]) | ||
# Y.A.G. Fosado, | # Y.A.G. Fosado, ''Soft Matter'' '''19''', 4820-4828 (2023) | ||
#: Nanostars planarity modulates the elasticity of DNA hydrogels ([https://arxiv.org/abs/2202.06331 arXiv]) | #: [https://doi.org/10.1039/D2SM00221C Nanostars planarity modulates the elasticity of DNA hydrogels] ([https://arxiv.org/abs/2202.06331 arXiv]) | ||
# X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, ''J. Am. Chem. Soc.'' '''144''', 4507–4514 (2022) | # X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, ''J. Am. Chem. Soc.'' '''144''', 4507–4514 (2022) | ||
#: [https://doi.org/10.1021/jacs.1c12593 Structure-guided designing pre-organization in bivalent aptamers] | #: [https://doi.org/10.1021/jacs.1c12593 Structure-guided designing pre-organization in bivalent aptamers] | ||
Line 355: | Line 355: | ||
# E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, ''Sci. Robot.'' '''7''', eabn5459 (2022) | # E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, ''Sci. Robot.'' '''7''', eabn5459 (2022) | ||
#: [https://doi.org/10.1126/scirobotics.abn5459 A DNA molecular printer capable of programmable positioning and patterning in two dimensions] | #: [https://doi.org/10.1126/scirobotics.abn5459 A DNA molecular printer capable of programmable positioning and patterning in two dimensions] | ||
# D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, | # D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, ''Nucleic Acids Res.'' '''51''', 3030–3040 (2023) | ||
#: Weak tension accelerates hybridization and dehybridization of short oligonucleotides ([https://doi.org/10.1101/2022.04.19.488836 bioRxiv]) | #: [https://doi.org/10.1093/nar/gkad118 Weak tension accelerates hybridization and dehybridization of short oligonucleotides] ([https://doi.org/10.1101/2022.04.19.488836 bioRxiv]) | ||
# S. Sensale, P. Sharma and G. Arya, ''Phys. Rev. E'' '''105''', 044136 (2022) | # S. Sensale, P. Sharma and G. Arya, ''Phys. Rev. E'' '''105''', 044136 (2022) | ||
#: [https://doi.org/10.1103/PhysRevE.105.044136 Binding kinetics of harmonically confined random walkers] | #: [https://doi.org/10.1103/PhysRevE.105.044136 Binding kinetics of harmonically confined random walkers] | ||
Line 367: | Line 367: | ||
# J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, ''Nat. Protoc.'' '''17''', 1762–1788 (2022) | # J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, ''Nat. Protoc.'' '''17''', 1762–1788 (2022) | ||
#: [https://doi.org/10.1038/s41596-022-00688-5 Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView] | #: [https://doi.org/10.1038/s41596-022-00688-5 Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView] | ||
# C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, | # C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, ''Sci. Adv'' '''8''', eade3003 (2022) | ||
#: A bistable and reconfigurable molecular system with encodable bonds ([https://doi.org/10.21203/rs.3.rs-1706596/v1 Research Square]) | #: [https://doi.org/10.1126/sciadv.ade3003 A bistable and reconfigurable molecular system with encodable bonds] ([https://doi.org/10.21203/rs.3.rs-1706596/v1 Research Square]) | ||
# R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, Biophys. J. accepted (2022) | # R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, Biophys. J. accepted (2022) | ||
#: [https://doi.org/10.1016/j.bpj.2022.09.036 Mechanical deformation behaviors and structural properties of ligated DNA crystals] ([https://doi.org/10.1101/2022.06.13.495931 bioRxiv]) | #: [https://doi.org/10.1016/j.bpj.2022.09.036 Mechanical deformation behaviors and structural properties of ligated DNA crystals] ([https://doi.org/10.1101/2022.06.13.495931 bioRxiv]) | ||
Line 375: | Line 375: | ||
# F. Fontana, T. Bellini and M. Todisco, ''Macromolecules'' '''55''', 5946–5953 (2022) | # F. Fontana, T. Bellini and M. Todisco, ''Macromolecules'' '''55''', 5946–5953 (2022) | ||
#: [https://doi.org/10.1021/acs.macromol.2c00856 Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities] | #: [https://doi.org/10.1021/acs.macromol.2c00856 Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities] | ||
# J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, | # J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, ''ACS Nano'' '''17''', 5387–5398 (2023) | ||
#: Designing the self-assembly of arbitrary shapes using minimal complexity building blocks ([https://arxiv.org/abs/2207.06954 arXiv]) | #: [https://doi.org/10.1021/acsnano.2c09677 Designing the self-assembly of arbitrary shapes using minimal complexity building blocks] ([https://arxiv.org/abs/2207.06954 arXiv]) | ||
# Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ''ACS Appl. Mater. Interfaces'' '''14''', 34470–34479 (2022) | # Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ''ACS Appl. Mater. Interfaces'' '''14''', 34470–34479 (2022) | ||
#: [https://doi.org/10.1021/acsami.2c09488 Design of uracil-modified DNA nanotubes for targeted drug release via DNA-modifying enzyme reactions] | #: [https://doi.org/10.1021/acsami.2c09488 Design of uracil-modified DNA nanotubes for targeted drug release via DNA-modifying enzyme reactions] | ||
# J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ''ACS Nano'' '''16''', 4289–4297 (2022) | # J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ''ACS Nano'' '''16''', 4289–4297 (2022) | ||
#: [https://doi.org/10.1021/acsnano.1c10347 Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint] | #: [https://doi.org/10.1021/acsnano.1c10347 Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint] | ||
# M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, | # M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, ''Biophys. J.'' '''122''', 3314-3322 (2023) | ||
#: Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations ([https://doi.org/10.1101/2022.07.03.498607 bioRxiv]) | #: [https://doi.org/10.1016/j.bpj.2023.07.008 Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations] ([https://doi.org/10.1101/2022.07.03.498607 bioRxiv]) | ||
# A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, ''ACS Nano'' accepted (2022) | # A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, ''ACS Nano'' accepted (2022) | ||
#: [https://doi.org/10.1021/acsnano.2c06035 Algorithmic design of 3D wireframe RNA polyhedra] ([https://doi.org/10.1101/2022.04.27.489653 bioRxiv]) | #: [https://doi.org/10.1021/acsnano.2c06035 Algorithmic design of 3D wireframe RNA polyhedra] ([https://doi.org/10.1101/2022.04.27.489653 bioRxiv]) | ||
Line 407: | Line 407: | ||
# E. Lattuada, T. Pietrangeli and F. Sciortino, ''J. Chem. Phys.'' '''157''', 135101 (2022) | # E. Lattuada, T. Pietrangeli and F. Sciortino, ''J. Chem. Phys.'' '''157''', 135101 (2022) | ||
#: [https://doi.org/10.1063/5.0117047 Interpenetrating gels in binary suspensions of DNA nanostars] | #: [https://doi.org/10.1063/5.0117047 Interpenetrating gels in binary suspensions of DNA nanostars] | ||
# P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, | # P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, '''The Biophysicist'' '''4''', accepted (2023) | ||
#: Translating DNA origami nanotechnology to middle school, high school, and undergraduate laboratories ([https://doi.org/10.1101/2022.09.15.508130 bioRxiv]) | #: [https://doi.org/10.35459/tbp.2022.000228 Translating DNA origami nanotechnology to middle school, high school, and undergraduate laboratories] ([https://doi.org/10.1101/2022.09.15.508130 bioRxiv]) | ||
# A. Büchl, E. Kopperger, M. Vogt, M. Langecker, F.C.Simmel and J. List, ''Biophys. J.'' accepted (2022) | # A. Büchl, E. Kopperger, M. Vogt, M. Langecker, F.C.Simmel and J. List, ''Biophys. J.'' accepted (2022) | ||
#: [https://doi.org/10.1016/j.bpj.2022.08.046 Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking] | #: [https://doi.org/10.1016/j.bpj.2022.08.046 Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking] | ||
We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. | We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. |
Revision as of 03:41, 14 September 2023
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Phys. Condens. Matter. 22, 104102 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
- T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
- F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
- C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
- C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B 116, 1161-11625 (2012)
- P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
- T.E. Ouldridge, J. Chem. Phys. 137, 144105 (2012)
- F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
- T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano 7, 2479-2490 (2013)
- T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res. 41, 8886-8895 (2013)
- J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys 15, 20395-20414 (2013)
- N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res. 41, 10641-10658 (2013)
- P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
- L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
- P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
- L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567-3574 (2014)
- Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
- J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, Nucleic Acids Res. 43, 6181-6190 (2014)
- R. Machinek, T.E. Ouldridge, N.E.C. Haley, J. Bath, A. J. Turberfield, Nature Comm. 5, 5324 (2014)
- M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
- I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ACS Nano 8, 10293–10304 (2014)
- C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
- L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1-8 (2015)
- P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, 26, 084001 (2015)
- F. Romano and F. Sciortino, Phys. Rev. Lett. 114, 078104 (2015)
- J. S. Schreck, T. E. Ouldridge, F. Romano, A. A. Louis, J.P.K. Doye, J. Chem. Phys. 142, 165101 (2015)
- M. Mosayebi, A. A. Louis, J.P.K. Doye, T. E. Ouldridge ACS Nano 9, 11993 (2015)
- T. E. Ouldridge, Mol. Phys. 113, 1-15 (2015)
- P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis, Biophys. J. 108, 1238-1247 (2015)
- B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 142, 234901 (2015)
- C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis, J. Chem. Phys. 143, 243122 (2015)
- Q. Wang, C.G. Myers, and B.M. Pettitt, J. Phys. Chem. B 119, 4937–4943 (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, arXiv (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, J. Chem. Theor. Comput. 15 4660-4672 (2019)
- J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, Science 349, 977-981 (2015)
- B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ACS Nano 10, 1724-1737 (2016)
- V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, Nat. Commun. 7, 10803 (2016)
- J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ACS Nano, 10, 4236-4247 (2016)
- M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ACS Nano, 10, 5882–5890 (2016)
- J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, J. Chem. Phys. 145, 084910 (2016)
- T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, Nucleic Acids Res. 44, 9121-9130 (2016)
- Q. Wang and B.M. Pettitt, J. Phys. Chem. Lett 7, 1042–1046 (2016)
- A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, J. Phys: Condens. Matter 29, 014006 (2017).
- E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ACS Nano 11, 2094-2102 (2017)
- E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, J. Chem. Phys 146, 214902 (2017)
- A. Suma and C. Micheletti, Proc. Natl. Acad. Sci. USA 114, E2991–E2997 (2017)
- Z. Shi, C. E. Castro and G. Arya, ACS Nano 11, 4617–4630 (2017)
- H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, J. Phys. Chem. B 121, 5033–5039 (2017)
- S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, Phys. Chem. Chem. Phys. 19, 14937-14946 (2017)
- A. Henning-Knechtel, J. Knechtel and M. Magzoub, Nucleic Acids Res. 45, 12057–12068 (2017)
- R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ACS Nano 11, 12426–12435 (2017)
- Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, Nanoscale 9, 12142-12149 (2017)
- Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, Nucleic Acids Res. 45 7633-7642 (2017)
- B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, Nucleic Acids Res. 46, 538-545 (2018)
- R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, Nucleic Acids Res. 46, 1102–1112 (2018)
- D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, Nucleic Acids Res. 46, 1553-1561 (2018)
- P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, J. Chem. Phys 148, 134910 (2018)
- T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, Nucleic Acids Res. 47, 10788–10800 (2019)
- S.R. Tee and Z. Wang, ACS Omega, 3, 292-301 (2018)
- E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, Phys. Rev. Lett. 121, 088101 (2018)
- M.M.C. Tortora and J.P.K. Doye, Mol. Phys. 116, 2773-2791 (2018)
- O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, Eur. Phys. J. E 41, 57 (2018)
- M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ACS Nano 12, 6734-6747 (2018)
- F. Romano and L. Rovigatti, in Design of Self-Assembling Materials (Springer, ed. I. Coluzza) pp 71-90 (2017)
- S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, Phys. Rev. Applied 9, 034025 (2018)
- E. Locatelli and L. Rovigatti, Polymers 10, 447 (2018)
- E. Spruijt, S.E. Tusk and H. Bayley, Nature Nanotechnology 13, 739-745 (2018)
- L. Coronel, A. Suma and C. Micheletti, Nucleic Acids Res. 46,7522–7532 (2018)
- E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, Scientific Reports 8, 6989 (2018)
- R. Jin and L. Maibaum, J. Chem. Phys. 150, 105103 (2019)
- F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, Nucleic Acids Res. 46, 7998–8009 (2018)
- E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ACS Nano 12, 9291-9299 (2018)
- S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, Phys. Rev. E 99 032414 (2019).
- B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, Nucleic Acids Res. 47, 1585–1597 (2019).
- N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, Nat. Commun 11, 2562 (2020)
- L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, Small 14, 1802580 (2018)
- R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, J. Phys. Condens. Matter 31, 074003 (2019)
- F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, J. Am. Chem. Soc. 140, 14670–14676 (2018)
- Y. Choi, H. Choi, A.C. Lee, S. Kwon, J. Vis. Exp., e58364 (2018)
- M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, Sci. Adv. 6, eaaw8331 (2020)
- C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, Nanoscale 11, 1647-1660 (2019)
- I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, Small 15, 1803628 (2019)
- M. Coraglio, E. Skoruppa and E. Carlon, J. Chem. Phys. 150, 135101 (2019)
- M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ACS Nano 13 1839-1848 (2019)
- Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
- A Numerical Study of Three-Armed DNA Hydrogel Structures (arXiv)
- W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, Bioconjugate Chem 30, 1850-1859 (2019)
- S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, Phys. Rev. E 100, 022402 (2019)
- A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, Nucleic Acids Res. 48, 4672–4680 (2020)
- J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, Biomolecules 9, 199 (2019)
- A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, J. Comput. Chem. 40, 2586-2595 (2019)
- J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, Nucleic Acids Res. 47, 11963–11975(2019)
- K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, Angew. Chem. Int. Ed. 59, 15942-15946 (2020)
- I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, Soft Matter 16, 990-1001 (2020)
- E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ACS Nano 13, 12591-12598 (2019)
- S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, Anal. Chem. 91, 14808-14811 (2019)
- Z. Shi and G. Arya, Nucleic Acids Research 48, 548-560 (2020)
- E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ACS Synth. Biol. 9, 1682-1692 (2020)
- P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, Nucleic Acids Res. 48, 10713–10725 (2020)
- Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches (bioRxiv)
- K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, J. Am. Chem. Soc 142, 815-825 (2020).
- E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, Nucleic Acids Res. 48, e72 (2020)
- M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7764–7775 (2020).
- C. Bores and B.M. Pettitt, Phys. Rev. E 101, 012406 (2020)
- A. Bader and S.L. Cockroft, Chem. Commun. 56, 5135-5138 (2020)
- J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, Methods in Molecular Biology, submitted.
- J. Lee, J.-H. Huh, S. Lee, Langmuir 36, 5118–5125 (2020)
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, Nat. Commun. 12, 501 (2021)
- B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
- Characterising DNA T-motifs by simulation and experiment (arXiv)
- C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, Nat. Mater. 20, 1264–1271 (2021)
- P. Irmisch, T.E. Ouldridge, and R. Seidel, J. Am. Chem. Soc 142, 11451–11463 (2020)
- F. Hong, J.S. Schreck and P. Šulc, Nucleic Acids Res. 48, 10726–10738 (2020).
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, J. Am. Chem. Soc. 142, 12069–12078 (2020)
- H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7748–7763 (2020).
- K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, ACS Nano 15, 7065–7077 (2021)
- E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, Nature 596, 367–371 (2021)
- Y.A.G. Fosado, F. Landuzzi and T. Sakaue, Soft Matter 17, 1530-1537 (2021)
- F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, Langmuir 36, 10387–10396 (2020)
- J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, Small Str. 1, 2000038 (2020)
- G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, Nat. Chem. 12, 1067–1075 (2020)
- J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ACS Nano 14, 17428–17441 (2020)
- J. Procyk, E. Poppleton and P. Šulc, Soft Matter 17, 3586-3593 (2021).
- Z. Sierzega, J. Wereszczynski and C. Prior, Sci. Rep. 11, 1527 (2021)
- E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, Phys. Rev. E 103, 042408 (2021)
- C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, J. Phys. Chem. B 124, 10337–10344 (2020)
- E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, Nanoscale 12, 23003-23012 (2020)
- B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld and T.F.A. de Greef, Nat. Catal. 3, 295–306 (2020)
- R. Li, H. Chen and J.H. Choi, Angew. Chem. Int. Ed. 60, 7165-7173 (2021)
- D. Wang, L. Yu, C.-M. Huang, G. Arya, S. Chang, and Y. Ke, J. Am. Chem. Soc. 143, 2256–2263 (2021)
- R. Li, H. Chen, H. Lee, J. H. Choi, Appl. Sci. 11, 2357 (2021)
- G. Park, M. K. Cho, and Y. Jung, J. Chem. Theory Comput., 17 1308-1317 (2021)
- S. Jonchhe, S. Pandey, D. Karna, P. Pokhrel, Y. Cui, S. Mishra, H. Sugiyama, M. Endo and H. Mao, J. Am. Chem. Soc 142, 10042–10049 (2020)
- R. Li, H. Chen and J. H. Choi, Small 17, 2007069 (2021)
- S. Naskar, P. K. Maiti, J. Mater. Chem. B 9, 5102-5113
- B. Babatunde, S. Arias, J. Cagan and R.E. Taylor, Appl. Sci. 11, 2950 (2021)
- N.M. Gravina, J.C. Gumbart and H.D. Kim, J. Phys. Chem. B 125, 4016–4024 (2021)
- A. Sengar, T.E. Ouldridge, O. Henrich, L. Rovigatti and P. Šulc, Front. Mol. Biosci. 8, 693710 (2021)
- E. Poppleton, R. Romero, A. Mallya, L. Rovigatti and P. Šulc, Nucl. Acids Res. 49 W491–W498 (2021)
- Y. Yamashita, K. Watanabe, S. Murata and I. Kawamata, Chem-Bio Informatics Journal 21, 28-38 (2021)
- E. Benson, R. Carrascosa Marzo, J. Bath, A.J. Turberfield, Small 17, 2007704 (2021)
- Z. Qu, Y.N. Zhang, Z. Dai, Y. Zhang, Y. Hao, J. Shen, F. Wang, Q. Li, C. Fan, X. Liu, Angew. Chem. Int. Ed. 60, 16693-16699 (2021)
- Y. Wang, I. Baars, F. Fördös and B. Högberg, ACS Nano 15 9614–9626 (2021)
- Y. Wang, E. Benson, F. Fördős, M. Lolaico, I. Baars, T. Fang, A.I. Teixeira, B. Högberg, Adv. Mater. 33, 2008457 (2021)
- L. Li, H. Wang, C. Xiong, D. Luo, H. Chen and Y. Liu, J. Phys.: Condens. Matter 33, 185102 (2021)
- J. P. Mahalik and M. Muthukumar, submitted
- Nucleotide Dynamics During Flossing of Polycation-DNA-Polycation through a Nanopore using Molecular Dynamics (bioRxiv)
- N. Li, Y. Liu, Z. Yin, R. Liu, L. Zhang, Y. Zhao, L. Ma, X. Dai, D. Zhou, X. Su, Nano Today 41 101308 (2021)
- Y. Yang, Q. Lu, C.-M. Huang, H. Qian, Y. Zhang, S. Deshpande, G. Arya, Y. Ke, S. Zauscher, Angew. Chem. Int. Ed. 60, 3241-23247 (2021)
- Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, J. Am. Chem. Soc. 143, 13292–13298 (2021)
- Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, Nucleic Acids Res. 49, 8987–8999 (2021)
- F. Liu, X. Liu, Q. Shi, C. Maffeo, M. Kojima, L. Dong, A. Aksimentiev, Q. Huang, T. Fukuda and T. Arai, Nanoscale 13, 15552-15559 (2021)
- J. Appeldorn, S. Lemcke, T. Speck and A. Nikoubashman, J. Phys. Chem. B 126, 5007–5016 (2022).
- H. Jun, X. Wang, M.F. Parsons, W.P. Bricker, T. John, S. Li, S. Jackson, W. Chiu, M. Bathe, Nucleic Acids Res. 49, 10265–10274 (2021)
- C.K. Wong, C. Tang, J.S. Schreck and J.P.K. Doye, Nanoscale 14, 2638–2648 (2022).
- W. Lim, F. Randisi, J.P.K. Doye and A.A. Louis, Nucleic Acids Res. 50, 2480–2492 (2022).
- W.T. Kaufhold, W. Pfeifer, C.E. Castro and L. Di Michele, ACS Nano 16, 8784–8797 (2022).
- H. Su, J.M. Brockman, Y. Duan, N. Sen, H. Chhabra, A. Bazrafshan, A.T. Blanchard, T. Meyer, B. Andrews, J.P.K. Doye, Y. Ke, R.B. Dyer and K. Salaita, J. Am. Chem. Soc. 43, 19466–19473 (2021).
- L. Yang, C. Cullin and J. Elezgaray, ChemPhysChem 23, e202200021 (2022).
- Y. Pan, R. Weng, L. Zhang, J. Qiu, X. Wang, G. Liao, Z. Qin, L. Zhang, H. Xiao, Y. Qian, X. Su, Nano Today 46 101573 (2022).
- X. Wang, S. Li, H. Jun, T. John, K. Zhang, H. Fowler, J.P.K. Doye, W. Chiu and M. Bathe, Sci. Adv. 8, eabn0039 (2022).
- E. Poppleton, A. Mallya, S. Dey, J. Joseph, P. Šulc, Nucleic Acids Res. 50, D246–D252 (2022)
- R. Foffi, F. Sciortino, J. M. Tavares, P. I. C. Teixeira, Soft Matter 17, 10736-10743 (2021)
- J. Yoo, S. Park, C. Maffeo, T. Ha, A. Aksimentiev, Nucleic Acids Res. 49, 11459–11475 (2021).
- E. Lin-Shiao, W.G. Pfeifer, B.R. Shy, M. Saffari Doost, E. Chen, V.S. Vykunta, J.R. Hamilton, E.C. Stahl, D.M. Lopez, C.R. Sandoval Espinoza, A.E. Dejanov, R.J. Lew, M.G. Poirer, A. Marson, C.E. Castro, J.A. Doudna, Nucleic Acids Res. 50, 1256–1268 (2022)
- J.P.K. Doye, A.A. Louis, J.S. Schreck, F. Romano, R.M. Harrison, M. Mosayebi, M.C. Engel, T.E. Ouldridge, in Energy Landscapes of Nanoscale Systems, ed. D.J. Wales, Frontiers of Nanoscience (Elsevier) Vol. 21, Chapter 9, pp 195-210 (2022)
- Y. Deng, Y. Tan, L. Zhang, C. Zhang, X. Su, submitted.
- Forecasting the reaction of DNA modifying enzymes on DNA nanostructures by coarse grained model for stimuli-responsive drug delivery (Research Square)
- D. Smith and G. Tikhomirov, submitted.
- small: A programmatic nanostructure design and modelling environment (arXiv)
- S. Assenza and R. Pérez, J. Chem. Theory Comput 18, 3239–3256 (2022)
- D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, Molecules 27, 63 (2022)
- M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, submitted.
- A rhythmically pulsing leaf-spring nanoengine that drives a passive follower (biorXiv)
- C.K. Wong and J.P.K. Doye, Appl. Sci. 12, 5875 (2022)
- L. Zhang, J. Chen, M. He, X. Su, Exploration 2, 20210265 (2022)
- F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, Entropy 24, 458 (2022)
- Y.A.G. Fosado, Soft Matter 19, 4820-4828 (2023)
- X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, J. Am. Chem. Soc. 144, 4507–4514 (2022)
- L. Liu F. Hong H. Liu X. Zhou S. Jiang P. Šulc J.-H. Jiang and H. Yan, Sci. Adv. 8, eabm9530 (2022)
- Y. Xin, P. Piskunen, A. Suma, C. Li, H. Ijäs, S. Ojasalo, I. Seitz, M.A. Kostiainen, G. Grundmeier, V. Linko and A. Keller, Small 18, 2107393 (2022)
- R.L. Bender, H. Ogasawara, A.V. Kellner, A. Velusamy and K. Salaita, submitted
- Unbreakable DNA tension probes show that cell adhesion receptors detect the molecular force-extension curve of their ligands (bioRxiv)
- E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, Sci. Robot. 7, eabn5459 (2022)
- D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, Nucleic Acids Res. 51, 3030–3040 (2023)
- S. Sensale, P. Sharma and G. Arya, Phys. Rev. E 105, 044136 (2022)
- S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka and H. Yan, Nat. Commun. 13, 2271 (2022)
- D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022)
- SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations (arXiv)
- L. Rovigatti, J. Russo, F. Romano, M. Matthies, L. Kroc and P. Sulc, Nanoscale, accepted (2022)
- J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, Nat. Protoc. 17, 1762–1788 (2022)
- C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, Sci. Adv 8, eade3003 (2022)
- R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, Biophys. J. accepted (2022)
- C. Xie, Y. Hu, Z. Chen, K. Chen and L. Pan, Nanotechnology 33, 405603 (2022)
- F. Fontana, T. Bellini and M. Todisco, Macromolecules 55, 5946–5953 (2022)
- J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, ACS Nano 17, 5387–5398 (2023)
- Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ACS Appl. Mater. Interfaces 14, 34470–34479 (2022)
- J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ACS Nano 16, 4289–4297 (2022)
- M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, Biophys. J. 122, 3314-3322 (2023)
- A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, ACS Nano accepted (2022)
- N. Chauhan, Y. Xiong, S. Ren, A. Dwivedy, N. Magazine, L. Zhou, X. Jin, T. Zhang, B.T. Cunningham, S. Yao, W. Huang and X. Wang, J. Am. Chem. Soc. 144, accepted (2022)
- A. Mills, N. Aissaoui, D. Maurel, J. Elezgaray, F. Morvan, J. J. Vasseur, E. Margeat, R.B. Quast, J. Lai Kee-Him, N. Saint, C. Benistant, A. Nord, F. Pedaci and G. Bellot, Nat. Commun. 13, 3182 (2022)
- T. Panczyk, K. Nieszporek and P. Wolski, Molecules 27, 4915 (2022)
- E.E. Kurisinkal, V. Caroprese, M.M. Koga, D. Morzy and M.M.C. Bastings, Molecules 27 4968 (2022)
- R.P. Narayanan, J. Procyk, P. Nandi, A. Prasad, Y. Xu, E. Poppleton, D. Williams, F. Zhang, H. Yan, P.-L. Chiu, N. Stephanopoulos and P. Šulc, ACS Nano 16, 14086–14096 (2022)
- J. Wang, Y. Wei, P. Zhang, Y. Wang, Q. Xia, X. Liu, S. Luo, J. Shi, J. Hu, C. Fan, B. Li, L. Wang, X. Zhou and J. Li, Nano Lett. 22, 7173–7179 (2022)
- S. Li, Y. Coffinier, C. Lagadec, F. Cleri, K. Nishiguchi, A. Fujiwara, T. Fujii, S.-H. Kim and N.Clément, Biosens. Bioelectron. 216, 114643 (2022)
- S. Bianco, T. Hu, O. Henrich and S. W.Magennis, Biophysical Reports 2, 100070 (2022)
- Y. Li, C. Maffeo, H. Joshi, A. Aksimentiev, B. Ménard and R. Schulman, Sci. Adv. 8, eabq4834 (2022)
- G. Kloes, T.J.D. Bennett, A. Chapet-Batlle, A. Behjatian, A.J. Turberfield and M. Krishnan, Nano Lett. accepted (2022)
- E. Lattuada, T. Pietrangeli and F. Sciortino, J. Chem. Phys. 157, 135101 (2022)
- P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, The Biophysicist 4', accepted (2023)
- A. Büchl, E. Kopperger, M. Vogt, M. Langecker, F.C.Simmel and J. List, Biophys. J. accepted (2022)
We are also maintaining a list of all published papers using oxDNA at publons.