Publications: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(138 intermediate revisions by the same user not shown) | |||
Line 107: | Line 107: | ||
# Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, ''Nanoscale'' '''9''', 12142-12149 (2017) | # Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, ''Nanoscale'' '''9''', 12142-12149 (2017) | ||
#:[https://doi.org/10.1039/C7NR03809G A DNA bipedal nanowalker with a piston-like expulsion stroke] | #:[https://doi.org/10.1039/C7NR03809G A DNA bipedal nanowalker with a piston-like expulsion stroke] | ||
# G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips and G. Seelig, ''Nat. Nanotechnol.'' '''12''', 920–927 (2017) | |||
#: [https://doi.org/10.1038/nnano.2017.127 A spatially localized architecture for fast and modular DNA computing] | |||
# Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, ''Nucleic Acids Res.'' '''45''' 7633-7642 (2017) | # Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, ''Nucleic Acids Res.'' '''45''' 7633-7642 (2017) | ||
#: [https://doi.org/10.1093/nar/gkx516 Influence of DNA sequence on the structure of minicircles under torsional stress] | #: [https://doi.org/10.1093/nar/gkx516 Influence of DNA sequence on the structure of minicircles under torsional stress] | ||
Line 135: | Line 137: | ||
# E. Locatelli and L. Rovigatti, ''Polymers'' '''10''', 447 (2018) | # E. Locatelli and L. Rovigatti, ''Polymers'' '''10''', 447 (2018) | ||
#: [https://doi.org/10.3390/polym10040447 An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids] ([https://www.preprints.org/manuscript/201803.0203/v1 preprints]) | #: [https://doi.org/10.3390/polym10040447 An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids] ([https://www.preprints.org/manuscript/201803.0203/v1 preprints]) | ||
# E. Spruijt, S.E. Tusk and H. Bayley, '' | # E. Spruijt, S.E. Tusk and H. Bayley, ''Nat. Nanotechnol.'' '''13''', 739-745 (2018) | ||
#: [http://dx.doi.org/10.1038/s41565-018-0139-6 DNA scaffolds support stable and uniform peptide nanopores] | #: [http://dx.doi.org/10.1038/s41565-018-0139-6 DNA scaffolds support stable and uniform peptide nanopores] | ||
# L. Coronel, A. Suma and C. Micheletti, ''Nucleic Acids Res.'' '''46''',7522–7532 (2018) | # L. Coronel, A. Suma and C. Micheletti, ''Nucleic Acids Res.'' '''46''',7522–7532 (2018) | ||
Line 209: | Line 211: | ||
# A. Bader and S.L. Cockroft, ''Chem. Commun.'' '''56''', 5135-5138 (2020) | # A. Bader and S.L. Cockroft, ''Chem. Commun.'' '''56''', 5135-5138 (2020) | ||
#: [https://doi.org/10.1039/D0CC00882F Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices] | #: [https://doi.org/10.1039/D0CC00882F Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices] | ||
# J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, ''Methods in Molecular Biology'', | # J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, ''Methods in Molecular Biology'' ''2639'', 93-112 (2023). | ||
#: The oxDNA coarse-grained model as a tool to simulate DNA origami ([http://arxiv.org/abs/2004.05052 arXiv]) ([http://dx.doi.org/10.5287/bodleian:vgqKg0rYo data]) | #: [https://doi.org/10.1007/978-1-0716-3028-0_6 The oxDNA coarse-grained model as a tool to simulate DNA origami] ([http://arxiv.org/abs/2004.05052 arXiv]) ([http://dx.doi.org/10.5287/bodleian:vgqKg0rYo data]) | ||
# J. Lee, J.-H. Huh, S. Lee, ''Langmuir'' '''36''', 5118–5125 (2020) | # J. Lee, J.-H. Huh, S. Lee, ''Langmuir'' '''36''', 5118–5125 (2020) | ||
#: [https://doi.org/10.1021/acs.langmuir.0c00239 DNA Base Pair-Stacking Crystallization of Gold Colloids] | #: [https://doi.org/10.1021/acs.langmuir.0c00239 DNA Base Pair-Stacking Crystallization of Gold Colloids] | ||
Line 295: | Line 297: | ||
# Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, ''J. Am. Chem. Soc.'' '''143''', 13292–13298 (2021) | # Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, ''J. Am. Chem. Soc.'' '''143''', 13292–13298 (2021) | ||
#: [https://doi.org/10.1021/jacs.1c06226 A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy] | #: [https://doi.org/10.1021/jacs.1c06226 A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy] | ||
# T. Lee, S. Do, J.G. Lee, D.-N. Kim and Y. Shin, ''Nanoscale'' '''13''', 17638-17647 (2021) | |||
#: [https://doi.org/10.1039/D1NR03495B The flexibility-based modulation of DNA nanostar phase separation] | |||
# Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, ''Nucleic Acids Res.'' '''49''', 8987–8999 (2021) | # Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, ''Nucleic Acids Res.'' '''49''', 8987–8999 (2021) | ||
#: [https://doi.org/10.1093/nar/gkab656 A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules] | #: [https://doi.org/10.1093/nar/gkab656 A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules] | ||
Line 335: | Line 339: | ||
# D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, ''Molecules'' '''27''', 63 (2022) | # D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, ''Molecules'' '''27''', 63 (2022) | ||
#: [https://doi.org/10.3390/molecules27010063 Unified Nanotechnology Format: One Way to Store Them All] | #: [https://doi.org/10.3390/molecules27010063 Unified Nanotechnology Format: One Way to Store Them All] | ||
# M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, | # M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, ''Nat. Nanotechnol.'' '''19''', 226–236 (2024) | ||
#: A rhythmically pulsing leaf-spring nanoengine that drives a passive follower ([https://doi.org/10.1101/2021.12.22.473833 biorXiv]) | #: [https://doi.org/10.1038/s41565-023-01516-x A rhythmically pulsing leaf-spring nanoengine that drives a passive follower] ([https://doi.org/10.1101/2021.12.22.473833 biorXiv]) | ||
# C.K. Wong and J.P.K. Doye, ''Appl. Sci.'' '''12''', 5875 (2022) | # C.K. Wong and J.P.K. Doye, ''Appl. Sci.'' '''12''', 5875 (2022) | ||
#: [https://doi.org/10.3390/app12125875 The free-energy landscape of a mechanically bistable DNA origami] ([http://arxiv.org/abs/2201.08920 arXiv]) | #: [https://doi.org/10.3390/app12125875 The free-energy landscape of a mechanically bistable DNA origami] ([http://arxiv.org/abs/2201.08920 arXiv]) | ||
Line 343: | Line 347: | ||
# F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, ''Entropy'' '''24''', 458 (2022) | # F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, ''Entropy'' '''24''', 458 (2022) | ||
#: [https://doi.org/10.3390/e24040458 OxDNA to study species interactions] ([https://arxiv.org/abs/2202.05653 arXiv]) | #: [https://doi.org/10.3390/e24040458 OxDNA to study species interactions] ([https://arxiv.org/abs/2202.05653 arXiv]) | ||
# Y.A.G. Fosado, | # Y.A.G. Fosado, ''Soft Matter'' '''19''', 4820-4828 (2023) | ||
#: Nanostars planarity modulates the elasticity of DNA hydrogels ([https://arxiv.org/abs/2202.06331 arXiv]) | #: [https://doi.org/10.1039/D2SM00221C Nanostars planarity modulates the elasticity of DNA hydrogels] ([https://arxiv.org/abs/2202.06331 arXiv]) | ||
# X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, ''J. Am. Chem. Soc.'' '''144''', 4507–4514 (2022) | # X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, ''J. Am. Chem. Soc.'' '''144''', 4507–4514 (2022) | ||
#: [https://doi.org/10.1021/jacs.1c12593 Structure-guided designing pre-organization in bivalent aptamers] | #: [https://doi.org/10.1021/jacs.1c12593 Structure-guided designing pre-organization in bivalent aptamers] | ||
Line 355: | Line 359: | ||
# E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, ''Sci. Robot.'' '''7''', eabn5459 (2022) | # E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, ''Sci. Robot.'' '''7''', eabn5459 (2022) | ||
#: [https://doi.org/10.1126/scirobotics.abn5459 A DNA molecular printer capable of programmable positioning and patterning in two dimensions] | #: [https://doi.org/10.1126/scirobotics.abn5459 A DNA molecular printer capable of programmable positioning and patterning in two dimensions] | ||
# D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, | # A. Dutta, K. Tapio, A. Suma, A. Mostafa, Y. Kanehira, V. Carnevale, G. Bussi and I. Bald, ''Nanoscale'' '''14''', 16467-16478 (2022) | ||
#: Weak tension accelerates hybridization and dehybridization of short oligonucleotides ([https://doi.org/10.1101/2022.04.19.488836 bioRxiv]) | #: [https://doi.org/10.1039/D2NR03664A Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering] | ||
# D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, ''Nucleic Acids Res.'' '''51''', 3030–3040 (2023) | |||
#: [https://doi.org/10.1093/nar/gkad118 Weak tension accelerates hybridization and dehybridization of short oligonucleotides] ([https://doi.org/10.1101/2022.04.19.488836 bioRxiv]) | |||
# S. Sensale, P. Sharma and G. Arya, ''Phys. Rev. E'' '''105''', 044136 (2022) | # S. Sensale, P. Sharma and G. Arya, ''Phys. Rev. E'' '''105''', 044136 (2022) | ||
#: [https://doi.org/10.1103/PhysRevE.105.044136 Binding kinetics of harmonically confined random walkers] | #: [https://doi.org/10.1103/PhysRevE.105.044136 Binding kinetics of harmonically confined random walkers] | ||
Line 363: | Line 369: | ||
# D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022) | # D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022) | ||
#: SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations ([https://arxiv.org/abs/2205.01628 arXiv]) | #: SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations ([https://arxiv.org/abs/2205.01628 arXiv]) | ||
# L. Rovigatti, J. Russo, F. Romano, M. Matthies, L. Kroc and P. Sulc, ''Nanoscale'', | # L. Rovigatti, J. Russo, F. Romano, M. Matthies, L. Kroc and P. Sulc, ''Nanoscale'' '''14''', 14268-14275 (2022) | ||
#: [https://doi.org/10.1039/D2NR03533B A simple solution to the problem of self-assembling cubic diamond crystals] ([https://arxiv.org/abs/2205.10680 arXIv]) | #: [https://doi.org/10.1039/D2NR03533B A simple solution to the problem of self-assembling cubic diamond crystals] ([https://arxiv.org/abs/2205.10680 arXIv]) | ||
# J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, ''Nat. Protoc.'' '''17''', 1762–1788 (2022) | # J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, ''Nat. Protoc.'' '''17''', 1762–1788 (2022) | ||
#: [https://doi.org/10.1038/s41596-022-00688-5 Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView] | #: [https://doi.org/10.1038/s41596-022-00688-5 Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView] | ||
# C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, | # C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, ''Sci. Adv'' '''8''', eade3003 (2022) | ||
#: A bistable and reconfigurable molecular system with encodable bonds ([https://doi.org/10.21203/rs.3.rs-1706596/v1 Research Square]) | #: [https://doi.org/10.1126/sciadv.ade3003 A bistable and reconfigurable molecular system with encodable bonds] ([https://doi.org/10.21203/rs.3.rs-1706596/v1 Research Square]) | ||
# R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, | # R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, ''Biophys. J.'' '''121''', 4078-4090 (2022) | ||
#: Mechanical deformation behaviors and structural properties of ligated DNA crystals ([https://doi.org/10.1101/2022.06.13.495931 bioRxiv]) | #: [https://doi.org/10.1016/j.bpj.2022.09.036 Mechanical deformation behaviors and structural properties of ligated DNA crystals] ([https://doi.org/10.1101/2022.06.13.495931 bioRxiv]) | ||
# C. Xie, Y. Hu, Z. Chen, K. Chen and L. Pan, ''Nanotechnology'' '''33''', 405603 (2022) | # C. Xie, Y. Hu, Z. Chen, K. Chen and L. Pan, ''Nanotechnology'' '''33''', 405603 (2022) | ||
#: [https://doi.org/10.1088/1361-6528/ac7d62 Tuning curved DNA origami structures through mechanical design and chemical adducts] | #: [https://doi.org/10.1088/1361-6528/ac7d62 Tuning curved DNA origami structures through mechanical design and chemical adducts] | ||
# F. Fontana, T. Bellini and M. Todisco, ''Macromolecules'' '''55''', 5946–5953 (2022) | # F. Fontana, T. Bellini and M. Todisco, ''Macromolecules'' '''55''', 5946–5953 (2022) | ||
#: [https://doi.org/10.1021/acs.macromol.2c00856 Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities] | #: [https://doi.org/10.1021/acs.macromol.2c00856 Liquid Crystal Ordering in DNA Double Helices with Backbone Discontinuities] | ||
# J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, | # Z. Weng, H. Yu, W. Luo, L. Zhang, Z. Zhang, T. Wang, Q. Liu, Y. Guo, Y. Yang, J. Li, L. Yang, L. Dai, Q. Pu, X. Zhou and G. Xie, ''Anal. Chim. Acta'' '''1199''', 339568 (2022) | ||
#: Designing the self-assembly of arbitrary shapes using minimal complexity building blocks ([https://arxiv.org/abs/2207.06954 arXiv]) | #: [https://doi.org/10.1016/j.aca.2022.339568 Specific and robust hybridization based on double-stranded nucleic acids with single-base resolution] | ||
# J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, ''ACS Nano'' '''17''', 5387–5398 (2023) | |||
#: [https://doi.org/10.1021/acsnano.2c09677 Designing the self-assembly of arbitrary shapes using minimal complexity building blocks] ([https://arxiv.org/abs/2207.06954 arXiv]) | |||
# Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ''ACS Appl. Mater. Interfaces'' '''14''', 34470–34479 (2022) | # Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ''ACS Appl. Mater. Interfaces'' '''14''', 34470–34479 (2022) | ||
#: [https://doi.org/10.1021/acsami.2c09488 Design of uracil-modified DNA nanotubes for targeted drug release via DNA-modifying enzyme reactions] | #: [https://doi.org/10.1021/acsami.2c09488 Design of uracil-modified DNA nanotubes for targeted drug release via DNA-modifying enzyme reactions] | ||
# J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ''ACS Nano'' '''16''', 4289–4297 (2022) | # J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ''ACS Nano'' '''16''', 4289–4297 (2022) | ||
#: [https://doi.org/10.1021/acsnano.1c10347 Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint] | #: [https://doi.org/10.1021/acsnano.1c10347 Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint] | ||
# M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, | # M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, ''Biophys. J.'' '''122''', 3314-3322 (2023) | ||
#: Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations ([https://doi.org/10.1101/2022.07.03.498607 bioRxiv]) | #: [https://doi.org/10.1016/j.bpj.2023.07.008 Kinetics of radiation-induced DNA double-strand breaks through coarse-grained simulations] ([https://doi.org/10.1101/2022.07.03.498607 bioRxiv]) | ||
# A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, | # A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, ''ACS Nano'' '''16''', 16608–16616 (2022) | ||
#: Algorithmic design of 3D wireframe RNA polyhedra ([https://doi.org/10.1101/2022.04.27.489653 bioRxiv]) | #: [https://doi.org/10.1021/acsnano.2c06035 Algorithmic design of 3D wireframe RNA polyhedra] ([https://doi.org/10.1101/2022.04.27.489653 bioRxiv]) | ||
# N. Chauhan, Y. Xiong, S. Ren, A. Dwivedy, N. Magazine, L. Zhou, X. Jin, T. Zhang, B.T. Cunningham, S. Yao, W. Huang and X. Wang, ''J. Am. Chem. Soc.'' ''' | # D. Fu, R.P. Narayanan, A. Prasad, F. Zhang, D. Williams, J.S. Schreck, H. Yan and J. Reif, ''Sci. Adv.'' '''8''', ade4455 (2022) | ||
#: [https://doi.org/10.1126/sciadv.ade4455 Automated design of 3D DNA origami with non-rasterized 2D curvature] | |||
# N. Chauhan, Y. Xiong, S. Ren, A. Dwivedy, N. Magazine, L. Zhou, X. Jin, T. Zhang, B.T. Cunningham, S. Yao, W. Huang and X. Wang, ''J. Am. Chem. Soc.'' '''145''', 20214–20228 (2023) | |||
#: [https://doi.org/10.1021/jacs.2c04835 Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus] | #: [https://doi.org/10.1021/jacs.2c04835 Net-shaped DNA nanostructures designed for rapid/sensitive detection and potential inhibition of the SARS-CoV-2 virus] | ||
# A. Mills, N. Aissaoui, D. Maurel, J. Elezgaray, F. Morvan, J. J. Vasseur, E. Margeat, R.B. Quast, J. Lai Kee-Him, N. Saint, C. Benistant, A. Nord, F. Pedaci and G. Bellot, ''Nat. Commun.'' '''13''', 3182 (2022) | # A. Mills, N. Aissaoui, D. Maurel, J. Elezgaray, F. Morvan, J. J. Vasseur, E. Margeat, R.B. Quast, J. Lai Kee-Him, N. Saint, C. Benistant, A. Nord, F. Pedaci and G. Bellot, ''Nat. Commun.'' '''13''', 3182 (2022) | ||
Line 393: | Line 403: | ||
# E.E. Kurisinkal, V. Caroprese, M.M. Koga, D. Morzy and M.M.C. Bastings, ''Molecules'' '''27''' 4968 (2022) | # E.E. Kurisinkal, V. Caroprese, M.M. Koga, D. Morzy and M.M.C. Bastings, ''Molecules'' '''27''' 4968 (2022) | ||
#: [https://doi.org/10.3390/molecules27154968 Selective integrin α5β1 targeting through spatially constrained multivalent DNA-based nanoparticles] | #: [https://doi.org/10.3390/molecules27154968 Selective integrin α5β1 targeting through spatially constrained multivalent DNA-based nanoparticles] | ||
# R.P. Narayanan, J. Procyk, P. Nandi, A. Prasad, Y. Xu, E. Poppleton, D. Williams, F. Zhang, H. Yan, P.-L. Chiu, N. Stephanopoulos and P. Šulc, ''ACS Nano'' | # R.P. Narayanan, J. Procyk, P. Nandi, A. Prasad, Y. Xu, E. Poppleton, D. Williams, F. Zhang, H. Yan, P.-L. Chiu, N. Stephanopoulos and P. Šulc, ''ACS Nano'' '''16''', 14086–14096 (2022) | ||
#: [https://doi.org/10.1021/acsnano.2c04013 Coarse-grained simulations for the characterization and optimization of hybrid protein–DNA nanostructures] | #: [https://doi.org/10.1021/acsnano.2c04013 Coarse-grained simulations for the characterization and optimization of hybrid protein–DNA nanostructures] | ||
# J. Wang, Y. Wei, P. Zhang, Y. Wang, Q. Xia, X. Liu, S. Luo, J. Shi, J. Hu, C. Fan, B. Li, L. Wang, X. Zhou and J. Li, ''Nano Lett.'' '''22''', 7173–7179 (2022) | # J. Wang, Y. Wei, P. Zhang, Y. Wang, Q. Xia, X. Liu, S. Luo, J. Shi, J. Hu, C. Fan, B. Li, L. Wang, X. Zhou and J. Li, ''Nano Lett.'' '''22''', 7173–7179 (2022) | ||
Line 403: | Line 413: | ||
# Y. Li, C. Maffeo, H. Joshi, A. Aksimentiev, B. Ménard and R. Schulman, ''Sci. Adv.'' '''8''', eabq4834 (2022) | # Y. Li, C. Maffeo, H. Joshi, A. Aksimentiev, B. Ménard and R. Schulman, ''Sci. Adv.'' '''8''', eabq4834 (2022) | ||
#:[https://doi.org/10.1126/sciadv.abq4834 Leakless end-to-end transport of small molecules through micron-length DNA nanochannels] | #:[https://doi.org/10.1126/sciadv.abq4834 Leakless end-to-end transport of small molecules through micron-length DNA nanochannels] | ||
# G. Kloes, T.J.D. Bennett, A. Chapet-Batlle, A. Behjatian, A.J. Turberfield and M. Krishnan, ''Nano Lett.'' | # G. Kloes, T.J.D. Bennett, A. Chapet-Batlle, A. Behjatian, A.J. Turberfield and M. Krishnan, ''Nano Lett.'' '''22''', 7834–7840 (2022) | ||
#: [https://doi.org/10.1021/acs.nanolett.2c02485 Far-field electrostatic signatures of macromolecular 3D conformation] | #: [https://doi.org/10.1021/acs.nanolett.2c02485 Far-field electrostatic signatures of macromolecular 3D conformation] | ||
# E. Lattuada, T. Pietrangeli and F. Sciortino, ''J. Chem. Phys.'' | # L. Guo, Y. Zhang, Y. Wang, M. Xie, J. Dai, Z. Qu, M. Zhou, S. Cao, J. Shi, L. Wang, X. Zuo, C. Fan and J. Li, ''Angew. Chem. Int. Ed.'' '''61''', e202117168 (2022) | ||
#: [https://doi.org/10.1002/anie.202117168 Directing multivalent aptamer-receptor binding on the cell surface with programmable atom-like nanoparticles] | |||
# N. Xie, M. Li, Y. Wang, H. Lv, J. Shi, J. Li, Q. Li, F. Wang and C. Fan, ''J. Am. Chem. Soc.'' '''144''', 9479–9488 (2022) | |||
#: [https://doi.org/10.1021/jacs.2c03258 Scaling Up Multi-bit DNA Full Adder Circuits with Minimal Strand Displacement Reactions] | |||
# E. Lattuada, T. Pietrangeli and F. Sciortino, ''J. Chem. Phys.'' '''157''', 135101 (2022) | |||
#: [https://doi.org/10.1063/5.0117047 Interpenetrating gels in binary suspensions of DNA nanostars] | #: [https://doi.org/10.1063/5.0117047 Interpenetrating gels in binary suspensions of DNA nanostars] | ||
# P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, | # X. Chen, Y. Wang, X. Dai, L. Ding, J. Chen, G. Yao, X. Liu, S. Luo, J. Shi, L. Wang, R. Nechushtai, E. Pikarsky, I. Willner, C. Fan, and J. Li, ''J. Am. Chem. Soc.'' '''144''', 6311–6320 (2022) | ||
#: Translating DNA origami nanotechnology to middle school, high school, and undergraduate laboratories ([https://doi.org/10.1101/2022.09.15.508130 bioRxiv]) | #: [https://doi.org/10.1021/jacs.1c13116 Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents] | ||
# Q. Kou, L. Wang, L. Zhang, L. Ma, S. Fu and X. Su, ''Small'' '''18''', 2205191 (2022) | |||
#: [https://doi.org/10.1002/smll.202205191 Simulation-assisted localized DNA logical circuits for cancer biomarkers detection and imaging] | |||
# P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, ''The Biophysicist'' '''4''', 68–81 (2023) | |||
#: [https://doi.org/10.35459/tbp.2022.000228 Translating DNA origami nanotechnology to middle school, high school, and undergraduate laboratories] ([https://doi.org/10.1101/2022.09.15.508130 bioRxiv]) | |||
# A. Büchl, E. Kopperger, M. Vogt, M. Langecker, F.C.Simmel and J. List, ''Biophys. J.'' '''121''', 4849-4859 (2022) | |||
#: [https://doi.org/10.1016/j.bpj.2022.08.046 Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking] | |||
# E. Poppleton, M. Matthies, D. Mandal, F. Romano, P. Šulc and L. Rovigatti, ''J. Open Source Softw.'' '''8''', 4693 (2023) | |||
#: [https://doi.org/10.21105/joss.04693 oxDNA: coarse-grained simulations of nucleic acids made simple] | |||
# A. Suma, V. Carnevale and C. Micheletti, ''Phys. Rev. Lett.'' '''130''', 048101 (2023) | |||
#: [https://doi.org/10.1103/PhysRevLett.130.048101 Nonequilibrium Thermodynamics of DNA Nanopore Unzipping] ([https://doi.org/10.48550/arXiv.2212.05882 arXiv]) | |||
# Y. Tang, H. Liu, Q. Wang, X. Qi, L. Yu, P. Šulc, F. Zhang, H. Yan and S. Jiang, ''J. Am. Chem. Soc.'' 145, 25, 13858–13868 (2023) | |||
#: [https://doi.org/10.1021/jacs.3c03044 DNA Origami Tessellations] | |||
# M. DeLuca, W.G. Pfeifer, B. Randoing, C.-M. Huang, M.G. Poirier, C.E. Castro and G. Arya, ''Nanoscale'' '''15''', 8356-8365 (2023) | |||
#: [https://doi.org/10.1039/D2NR05813H Thermally reversible pattern formation in arrays of molecular rotors] | |||
# T. Liang, C. Yang, X. Song, Y. Feng, Y. Liu and H. Chen, ''Phys. Rev. E'' '''108''', 014406 (2023) | |||
#: [https://doi.org/10.1103/PhysRevE.108.014406 Quantification of macromolecule crowding at single-molecule level] | |||
# D. Lysne, T. Hachigian, C. Thachuk, J. Lee and E. Graugnard ''J. Am. Chem. Soc.'' '''145''', 16691–16703 (2023) | |||
#: [https://doi.org/10.1021/jacs.3c04344 Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions] | |||
# A. Kucinic, C.-M. Huang, J. Wang, H.-J. Su and C.E. Castro, ''Nanoscale'', '''15''' 562-572 (2023) | |||
#: [https://doi.org/10.1039/D2NR05416G DNA origami tubes with reconfigurable cross-sections] | |||
# Y. Zhang, X. Yin, C. Cui, K. He, F. Wang, J. Chao, T. Li, X. Zuo, A. Li, L. Wang, N. Wang, X. Bo and C. Fan, ''Sci. Adv.'' '''9''', adf8263 (2023) | |||
#: [https://doi.org/10.1126/sciadv.adf8263 Prime factorization via localized tile assembly in a DNA origami framework] | |||
# W.G. Pfeifer, C.-M. Huang, M. G. Poirier, G. Arya and C. E. Castro, ''Sci. Adv.'' '''9''', adi0697 (2023) | |||
#: [https://doi.org/10.1126/sciadv.adi0697 Versatile computer-aided design of free-form DNA nanostructures and assemblies] ([https://doi.org/10.1101/2023.03.30.535006 bioRxiv]) | |||
# M. Lolaico, S. Blokhuizen, B. Shen, Y. Wang, and B. Högberg, ''ACS Nano'' '''17''', 6565–6574 (2023) | |||
#: [https://doi.org/10.1021/acsnano.2c11982 Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges] | |||
# Y. Wang, A. Kucinic, L. Des Rosiers, P.E. Beshay, N. Wile, M.W. Hudoba and C.E. Castro, ''Appl. Sci.'' '''13''', 3208 (2023) | |||
#: [https://doi.org/10.3390/app13053208 Mechanical Design of DNA Origami in the Classroom] | |||
# D. Morzy, C. Tekin, V. Caroprese, R. Rubio-Sánchez, L. Di Michele and M.M.C. Bastings, ''Nanoscale'' '''15''', 2849-2859 (2023) | |||
#: [https://doi.org/10.1039/D2NR05368C Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes] | |||
# L. Zhang, H. Zhao, H. Yang and X. Su, ''Biosens. Bioelectron.'' '''239''', 115622 (2023) | |||
#:[https://doi.org/10.1016/j.bios.2023.115622 Coarse-grained model simulation-guided localized DNA signal amplification probe for miRNA detection] | |||
# Y.-P. Qiao, C.-L. Ren and Y.-Q. Ma ''J. Phys. Chem. B'' '''127''', 4015–4021 (2023) | |||
#: [https://doi.org/10.1021/acs.jpcb.2c08618 Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick] | |||
# K. Cervantes-Salguero, Y.A. Gutiérrez Fosado, W. Megone, J.E. Gautrot and M. Palma, ''Molecules'' '''28''', 3686 (2023) | |||
#: [https://doi.org/10.3390/molecules28093686 Programmed self-assembly of DNA nanosheets with discrete single-molecule thickness and interfacial mechanics: Design, simulation, and characterization] | |||
# H.L. Too and Z. Wang, ''Nanoscale'' '''15''', 11915-11926 (2023) | |||
#: [https://doi.org/10.1039/D3NR01058A Exhaustive classification and systematic free-energy profile study of single-stranded DNA inter-overhang migration] | |||
# D. Saliba, X. Luo, F.J. Rizzuto and H.F. Sleiman, ''Nanoscale'' '''15''', 5403-5413 (2023) | |||
#: [https://doi.org/10.1039/D2NR06185F Programming rigidity into size-defined wireframe DNA nanotubes] | |||
# J. Lee and S. Lee, ''Anal. Chem.'' '''95''', 1856–1866 (2023) | |||
#: [https://doi.org/10.1021/acs.analchem.2c03378 Non-invasive, reliable, and fast quantification of DNA loading on gold nanoparticles by a one-step optical measurement] | |||
# X. Shen, Q. Ouyang, H. Tan, J. Ouyang and N. Na, ''Anal. Chem.'' '''95''', 5903–5910 (2023) | |||
#: [https://doi.org/10.1021/acs.analchem.2c04916 Computation-assisted design of ssDNA framework nanorobots for cancer logical recognition, toehold disintegration, visual dual-diagnosis, and synergistic therapy] | |||
# L. Tang, M. Huang, M. Zhang, Y. Pei, Y. Liu, Y. Wei, C. Yang, T. Xie, D. Zhang, R. Zhou, Y. Song, J. Song, ''Small Methods'' '''7''', 2300327 (2023) | |||
#: [https://doi.org/10.1002/smtd.202300327 De novo evolution of an antibody-mimicking multivalent aptamer via a DNA framework] | |||
# Z. Zheng, S.H. Kim, A. Chovin, N. Clement and C. Demaille, ''Chem. Sci.'' '''14''', 3652-3660 (2023) | |||
#: [https://doi.org/10.1039/D3SC00320E Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics] | |||
# M. Vogt, M. Langecker, M. Gouder, E. Kopperger, F. Rothfischer, F.C. Simmel and J. List, ''Nature Physics'' '''19''', 741–751 (2023) | |||
#: [https://doi.org/10.1038/s41567-023-01938-3 Storage of mechanical energy in DNA nanorobotics using molecular torsion springs] | |||
# C. Xie, Y. Hu, K. Chen, Z. Chen and L. Pan, ''Commun. Comput. Inf. Sci.'', '''1801''', 647–654 (2023) | |||
#: [https://doi.org/10.1007/978-981-99-1549-1_51 Tuning Geometric Conformations of Curved DNA Structures by Controlling Positions of Nicks] | |||
# S. Yu, J. Zhao, R. Chu, X. Li, G. Wu and X. Meng, ''Entropy'' '''25''', 796 (2023) | |||
#: [https://doi.org/10.3390/e25050796 Anomalous diffusion of polyelectrolyte segments on supported charged lipid bilayers] | |||
# I. Madrid, Z. Zheng, C. Gerbelot, A. Fujiwara, S. Li, S. Grall, K. Nishiguchi, S.H. Kim, A. Chovin, C. Demaille and N. Clement, ''ACS Nano'' '''17''', 17031–17040 (2023) | |||
#: [https://doi.org/10.1021/acsnano.3c04349 Ballistic Brownian Motion of Nanoconfined DNA] | |||
# Y. Ma, W. Guo, Q. Mou, X. Shao, M. Lyu, V. Garcia, L. Kong, W. Lewis, C. Ward, Z. Yang, X. Pan, S.S. Yi and Y. Lu, ''Nat. Biotechnol.'' (2023) | |||
#: [https://doi.org/10.1038/s41587-023-01801-z Spatial imaging of glycoRNA in single cells with ARPLA] | |||
# X. Luo, D. Saliba, T. Yang, S. Gentile, K. Mori, P.I. Garcia, T. Das, N. Bagheri, A. Porchetta, A. Guarne, G. Cosa, H.F. Sleiman, ''Angew. Chem. Int. Ed.'' '''62''' e202309869 (2023) | |||
#: [https://doi.org/10.1002/anie.202309869 Minimalist design of wireframe DNA nanotubes: Tunable geometry, size, chirality, and dynamics] | |||
# Y. Zhao, S. Cao, Y. Wang, F. Li, L. Lin, L. Guo, F. Wang, J. Chao, X. Zuo, Y. Zhu, L. Wang, J. Li and C. Fan, ''Nat. Mach. Intell.'' '''5''', 980–990 (2023) | |||
#: [https://doi.org/10.1038/s42256-023-00707-4 A temporally resolved DNA framework state machine in living cells] | |||
# X.R. Liu, I.Y. Loh, W. Siti, H.L. Too, T. Anderson and Z. Wang, ''Nanoscale Horiz.'', '''8''', 827-841 (2023) | |||
#: [https://doi.org/10.1039/D2NH00565D A light-operated integrated DNA walker–origami system beyond bridge burning] | |||
# H. Lv, N. Xie, M. Li, M. Dong, C. Sun, Q. Zhang, L. Zhao, J. Li, X. Zuo, H. Chen, F. Wang and C. Fan, ''Nature'' '''622''', 292–300(2023). | |||
#: [https://doi.org/10.1038/s41586-023-06484-9 DNA-based programmable gate arrays for general-purpose DNA computing] | |||
# C. Yang, X. Song, Y. Feng, G. Zhao, and Y. Liu, ''J. Phys.: Condens. Matter'' '''35''', 265101 (2023) | |||
#: [https://doi.org/10.1088/1361-648X/acc7eb Stability of DNA and RNA hairpins: a comparative study based on ox-DNA] | |||
# Xiaoya Song, Chao Yang, Yuyu Feng, Hu Chen, and Yanhui Liu, ''Commun. Theor. Phys.'' '''75''', 055601 (2023) | |||
#: [https://doi.org/10.1088/1572-9494/acc64c A common rule for the intermediate state caused by DNA mismatch in single-molecule experiments] | |||
# W. Siti, H.L. Too, T. Anderson, X.R. Liu, I.Y. Loh and Z. Wang, ''Sci. Adv.'' '''9''', adi8444 (2023) | |||
#: [https://dx.doi.org/10.1126/sciadv.adi8444 Autonomous DNA molecular motor tailor-designed to navigate DNA origami surface for fast complex motion and advanced nanorobotics] | |||
# R. Ma, A. Velusamy, S.A. Rashid, B.R. Deal, W. Chen, B. Petrich, R. Li, K. Salaita, ''Nat. Methods'' '''20''', 1666–1671 (2023) | |||
#: [https://doi.org/10.1038/s41592-023-02030-7 Molecular mechanocytometry using tension-activated cell tagging] ([https://doi.org/10.1101/2023.01.10.523449 bioRxiv]) | |||
# D. Karna, E. Mano, J. Ji, I. Kawamata, Y. Suzuki and H. Mao, ''Nat. Commun.'' '''14''', 6459 (2023) | |||
#: [https://doi.org/10.1038/s41467-023-41604-z Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies] | |||
# J. Fu, L. Zhang, Y. Long, Z. Liu, G. Meng, H. Zhao, X. Su and S. Shi, ''Anal. Chem.'' '''95''', 16089–16097 (2023) | |||
#: [https://doi.org/10.1021/acs.analchem.3c01861 Multiplexed CRISPR-based nucleic acid detection using a single Cas protein] | |||
# Y. Yang, Q. Lu, Y. Chen, M. DeLuca, G. Arya, Y. Ke and S. Zauscher, ''Angew. Chem. Int. Ed.'' '''62''', e202311727 (2023) | |||
#: [https://doi.org/10.1002/anie.202311727 Spatiotemporal control over polynucleotide brush growth on DNA origami nanostructures] | |||
# J.Y. Lee, H. Koh and D.-N. Kim, Nat. Commun. '''14''', 7079 (2023) | |||
#: [https://doi.org/10.1038/s41467-023-42873-4 A computational model for structural dynamics and reconfiguration of DNA assemblies] | |||
# M.C. Engel, J.A. Smith and M.P. Brenner, ''Phys. Rev. X'' '''13''', 041032 (2023) | |||
#: [https://doi.org/10.1103/PhysRevX.13.041032 Optimal control of nonequilibrium systems through automatic differentiation] | |||
# L. Yu, Y. Xu, M. Al-Amin, S. Jiang, M. Sample, A. Prasad, N. Stephanopoulos, P. Šulc, and H. Yan, ''J. Am. Chem. Soc.'' '''145''', 27336–27347 (2023) | |||
#: [https://doi.org/10.1021/jacs.3c07491 CytoDirect: A nucleic acid nanodevice for specific and efficient delivery of functional payloads to the cytoplasm] | |||
# Y.-P. Qiao and C.-L. Ren, ''Langmuir'' '''40''', 109–117 (2024) | |||
#: [https://doi.org/10.1021/acs.langmuir.3c02231 Correlated hybrid DNA structures explored by the oxDNA Model] | |||
# L. Kilwing, P. Lill, B. Nathwani, R. Guerra, E. Benson, T. Liedl and W. M. Shih, ''ACS Nano'' '''18''', 885–893 (2024) | |||
#: [https://doi.org/10.1021/acsnano.3c09522 Multilayer DNA origami with terminal interfaces that are flat and wide-area] | |||
# N. Adžić, C. Jochum, C. N. Likos, E. Stiakakis, ''Small'', '''20''', 2308763 (2024) | |||
#: [https://doi.org/10.1002/smll.202308763 Engineering ultrasoft interactions in stiff all-DNA dendrimers by site-specific control of scaffold flexibility] | |||
# A. Velusamy, R. Sharma, S.A. Rashid, H. Ogasawara and K. Salaita, ''Nat. Commun.'' '''15''', 704 (2024) | |||
#: [https://doi.org/10.1038/s41467-023-44061-w DNA mechanocapsules for programmable piconewton responsive drug delivery] | |||
# Y. Liu, B. Li, F. Wang, Q. Li, S. Jia, X. Liu, and M. Li, ''ACS Appl. Bio Mater.'' '''7''', 1311–1316 (2024) | |||
#: [https://doi.org/10.1021/acsabm.3c01270 Quantitative analysis of resistance to deformation of the DNA origami framework supported by struts] | |||
# S. He, H. Deng, P. Li, Q. Tian, Y. Yang, J. Hu, H. Li, T. Zhao, H. Ling, Y. Liu, S. Liu and Q. Guo, ''J. Nanobiotechnol.'' '''22''', 39 (2024) | |||
#: Bimodal DNA self-origami material with nucleic acid function enhancement | |||
# B. Babatunde, J. Cagan, R.E. Taylor, ''J. Mech. Des.'' '''146''', 051708 (2024) | |||
#: [https://doi.org/10.1115/1.4064242 An improved shape annealing algorithm for the generation of coated deoxyribonucleic acid origami nanostructures] | |||
# A.S.G. Martins, S.D. Reis, E. Benson, M.M. Domingues, J. Cortinhas, J.A. Vidal Silva, S.D. Santos, N.C. Santos, A.P. Pêgo, P.M.D. Moreno, ''Small'' '''20''', 2309140 (2024) | |||
#: [https://doi.org/10.1002/smll.202309140 Enhancing Neuronal Cell Uptake of Therapeutic Nucleic Acids with Tetrahedral DNA Nanostructures] | |||
# S Dey, R. Rivas-Barbosa, F. Sciortino, E. Zaccarelli and P. Zijlstra, ''Nanoscale'' '''16''', 4872-4879 (2024) | |||
#: [https://doi.org/10.1039/D3NR06140J Biomolecular interactions on densely coated nanoparticles: a single-molecule perspective] | |||
# T. Chen, S. Mao, J. Ma, X. Tang, R. Zhu, D. Mao, X. Zhu, Q. Pan, ''Angew. Chem. Int. Ed'' '''63''', e202319117 (2024) | |||
#: [https://doi.org/10.1002/anie.202319117 Proximity-enhanced functional imaging analysis of engineered tumors] | |||
# Y. Liu, Z. Dai, X. Xie, B. Li, S. Jia, Q. Li, M. Li, C. Fan and X. Liu, ''J. Am. Chem. Soc.'' '''146''', 8, 5461–5469 (2024) | |||
#: [https://doi.org/10.1021/jacs.3c13180 Spacer-programmed two-dimensional DNA origami assembly] | |||
# Z. Zheng, S. Grall, S.H. Kim, A. Chovin, N. Clement and C. Demaille, ''J. Am. Chem. Soc.'' '''146''', 9, 6094–6103 (2024) | |||
#: [https://doi.org/10.1021/jacs.3c13532 Activationless electron transfer of redox-DNA in electrochemical nanogaps] | |||
# M. Sample, M. Matthies and P. Šulc, ''ACS Nano'' '''18''', 30004–30016 (2024) | |||
#: [https://doi.org/10.1021/acsnano.4c10796 Hairygami: Analysis of DNA nanostructure's conformational change driven by functionalizable overhangs] ([https://doi.org/10.48550/arXiv.2302.09109 arXiv]) | |||
# M. Sample, M. Matthies and P. Šulc, ''2023 Winter Simulation Conference (WSC)'', San Antonio, TX, USA, pp. 91-105 (2023) | |||
#: [https://doi.org/10.1109/WSC60868.2023.10407580 Coarse-grained simulations of DNA and RNA systems with oxDNA and oxRNA models: Introductory tutorial] ([https://doi.org/10.48550/arXiv.2308.01455 arXiv]) | |||
# V. Caroprese, C. Tekin, V. Cencen, M. Mosayebi, T.B. Liverpool, D.N. Woolfson, G. Fantner, M.M.C. Bastings, submitted | |||
#: Structural flexibility dominates over binding strength for supramolecular crystallinity ([https://doi.org/10.1101/2023.09.04.556250 bioRxiv]) | |||
# C. Shi, D. Yang, X.Ma, L. Pan, Y. Shao, G. Arya, Y. Ke, C. Zhang, F. Wang, X. Zuo, M. Li and P. Wang, ''Angew. Chem. Int. Ed.'' '''63''' e202320179 (2024) | |||
#: [https://doi.org/10.1002/anie.202320179 A programmable DNAzyme for the sensitive detection of nucleic acids] ([https://doi.org/10.1101/2023.08.20.23294196 medRxiv]) | |||
# F. Smith, A. Sengar, G.‐B.V. Stan, T.E. Ouldridge, M. Stevens, J. Goertz and W. Bae, submitted | |||
#: Overcoming the speed limit of four‐way DNA branch migration with bulges in toeholds ([https://doi.org/10.1101/2023.05.15.540824 bioRxiv]) | |||
# K. Gallagher, J. Yu, D.A. King, R. Liu, E. Eiser, ''APL Mater.'' '''11''', 061129 (2023) | |||
#: [https://doi.org/10.1063/5.0145570 Towards new liquid crystal phases of DNA mesogens] ([https://doi.org/10.48550/arXiv.2302.03501 arXiv]) | |||
# G.B.M. Wisna, D. Sukhareva, J. Zhao, D. Satyabola, M. Matthies, S. Roy, P. Šulc, H. Yan and R.F. Hariadia, submitted | |||
#: High-speed 3D DNA-PAINT and unsupervised clustering for unlocking 3D DNA origami cryptography ([https://doi.org/10.1101/2023.08.29.555281 bioRxiv]) | |||
# H. Koh, J.Y. Lee, J.G. Lee, submitted | |||
#: Forming superhelix of double stranded DNA from local deformation ([https://doi.org/10.48550/arXiv.2307.04597 arXiv]) | |||
# N.P. Agarwal and A. Gopinath, submited | |||
#: DNA origami 2.0 ([https://doi.org/10.1101/2022.12.29.522100 bioRxiv]) | |||
# J.M. Weck and A. Heuer-Jungemann, submitted | |||
#: Fully addressable, designer superstructures assembled from a single modular DNA origami ([https://doi.org/10.1101/2023.09.14.557688 bioRxiv]) | |||
# Y. Xu, R. Zheng, A. Prasad, M. Liu, Z. Wan, X. Zhou, R.M. Porter, M. Sample, E. Poppleton, J. Procyk, H. Liu, Y. Li, S. Wang, H. Yan, P. Sulc, N. Stephanopoulos, submitted | |||
#: High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody ([https://doi.org/10.1101/2023.09.18.558353 bioRxiv]) | |||
# H. Liu, M. Matthies, J. Russo, L. Rovigatti, R.P. Narayanan, T. Diep, D. McKeen, O. Gang, N. Stephanopoulos, F. Sciortino, H. Yan, F. Romano and P. Šulc, ''Science'' '''384''', 776-781 (2024) | |||
#: [https://doi.org/10.1126/science.adl5549 Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments] ([https://doi.org/10.48550/arXiv.2310.10995 arXiv]) | |||
# L. Grabenhorst, M. Pfeiffer, T. Schinkel, M. Kümmerlin, J.B. Maglic, G.A. Brüggenthies, F. Selbach, A.T. Murr, P. Tinnefeld, V. Glembockyte, ''Nat. Nanotechnol.'' accepted (2024) | |||
#: [https://doi.org/10.1038/s41565-024-01804-0 Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output] ([https://doi.org/10.1101/2023.11.06.565795 bioRxiv]) | |||
# F. Tosti Guerra, E. Poppleton, P. Šulc, L. Rovigatti, submitted | |||
#: nNxB: a new coarse-grained model for RNA and DNA nanotechnology ([https://doi.org/10.48550/arXiv.2311.03317 arXiv]) | |||
# E.J. Ratajczyk, P. Šulc, A.J. Turberfield, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys.'' '''160''', 115101 (2024) | |||
#: [https://doi.org/10.1063/5.0199558 Coarse-grained modelling of DNA-RNA hybrids] ([https://doi.org/10.48550/arXiv.2311.07709 arXiv]) | |||
# M. DeLuca, D. Duke, T. Ye, M. Poirier, Y. Ke, C. Castro and G. Arya, ''Nat. Commun.'' '''15''', 3015 (2024) | |||
#: [https://doi.org/10.1038/s41467-024-46998-y Mechanism of DNA origami folding elucidated by mesoscopic simulations] ([https://doi.org/10.1101/2023.06.20.545758 bioRxiv]) | |||
# S. Cristofaro, L. Querciagrossa, L. Soprani, T.P. Fraccia, T. Bellini, R. Berardi, A. Arcioni, C. Zannoni, L. Muccioli, and S. Orlandi, ''Biomacromolecules'' '''25''', 3920–3929 (2024) | |||
#: [https://doi.org/10.1021/acs.biomac.3c01435 Simulating the lyotropic phase behavior of a partially self-complementary DNA tetramer] | |||
# A. Velusamy, R. Sharma, S.A. Rashid, H. Ogasawara and K. Salaita, ''Nat. Commun.'' '''15''', 704 (2024) | |||
#: [https://doi.org/10.1038/s41467-023-44061-w DNA mechanocapsules for programmable piconewton responsive drug delivery] | |||
# A. Voorspoels, J. Gevers, S. Santermans, N. Akkan, K. Martens, K. Willems, P. Van Dorpe, and A.S. Verhulst, ''J. Phys. Chem. A'' '''128''', 3926–3933 (2024) | |||
#: [https://doi.org/10.1021/acs.jpca.4c01772 Design principles of DNA-barcodes for nanopore-FET readout, based on molecular dynamics and TCAD simulations] | |||
# F. Tosti Guerra, E. Poppletoni, P. Šulc and L. Rovigatti, ''J. Chem. Phys.'' '''160''', 205102 (2024) | |||
#: [https://doi.org/10.1063/5.0202829 ANNaMo: Coarse-grained modeling for folding and assembly of RNA and DNA systems] ([https://doi.org/10.48550/arXiv.2311.03317 arXiv]) | |||
# Y. Wang, I. Baars, I. Berzina, I. Rocamonde-Lago, B. Shen, Y. Yang, M. Lolaico, J. Waldvogel, I. Smyrlaki, K. Zhu, R.A. Harris and B. Högberg, ''Nat. Nanotechnol.'' '''19''', 1366–137 (2024) | |||
#: [https://doi.org/10.1038/s41565-024-01676-4 A DNA robotic switch with regulated autonomous display of cytotoxic ligand nanopatterns] | |||
# W. Ji, X. Xiong, M. Cao, Y. Zhu, L. Li, F. Wang, C. Fan and H. Pei, ''Nat. Chem.'' '''16''', 1408–1417 (2024) | |||
#: [https://doi.org/10.1038/s41557-024-01565-2 Encoding signal propagation on topology-programmed DNA origami] | |||
# M. van Galen, A. Bok, T. Peshkovsky, J. van der Gucht, B. Albada and J. Sprakel, ''Nat. Chem.'' accepted (2024) | |||
#: [https://doi.org/10.1038/s41557-024-01571-4 De novo DNA-based catch bonds] | |||
# Y. Hu, J. Rogers, Y. Duan, A. Velusamy, S. Narum, S. Al Abdullatif and K. Salaita, ''Nat. Nanotechnol.'' '''19''', 1674–1685 (2024) | |||
#: [https://doi.org/10.1038/s41565-024-01723-0 Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors] | |||
# D. Svenšek, J. Sočan and M. Praprotnik, ''Macromol. Rapid Commun.'' accepted 2400382 (2024) | |||
#: [https://doi.org/10.1002/marc.202400382 Density–nematic coupling in isotropic solution of DNA: Multiscale model] | |||
# M. Mogheiseh and R.H. Ghasemi, ''J. Chem. Phys.'' '''161''', 045101 (2024) | |||
#: [https://doi.org/10.1063/5.0214313 Design and simulation of a wireframe DNA origami nanoactuator] | |||
# S.H. Wong, S.N. Kopf, V. Caroprese, Y. Zosso, D. Morzy, M.M.C. Bastings, ''Nano Lett.'' '''24''', 11210–11216 (2024) | |||
#: [https://doi.org/10.1021/acs.nanolett.4c02564 Modulating the DNA/lipid interface through multivalent hydrophobicity] | |||
# G. Nava, T. Carzaniga, L. Casiraghi, E. Bot, G. Zanchetta, F. Damin, M. Chiari, G. Weber, T. Bellini, L. Mollica and M. Buscaglia, ''Nucl. Acids Res.'' '''52''', 8661–8674 (2024) | |||
#: [https://doi.org/10.1093/nar/gkae576 Weak-cooperative binding of a long single-stranded DNA chain on a surface] | |||
# Y. Du, R. Li, A.S. Madhvacharyula, A.A. Swett, J.H. Choi, submitted | |||
#: DNA nanostar structures with tunable auxetic properties ([https://doi.org/10.1101/2023.12.22.573109 bioRxiv]) | |||
# G.M. Roozbahani, P. Colosi, A. Oravecz, E.M. Sorokina, W. Pfeifer, S. Shokri, Y. Wei, P. Didier, M. DeLuca, G. Arya, L. Tora, M. Lakadamyali, M.G. Poirier, C. E. Castro | |||
#: Piggybacking functionalized DNA nanostructures into live cell nuclei ([https://doi.org/10.1101/2023.12.30.573746 bioRxiv]) | |||
# A. Walbrun, T. Wang, M. Matthies, P. Šulc, F.C. Simmel, M. Rief, ''Nat. Commun.'' '''15''', 7564 (2024) | |||
#: [https://doi.org/10.1038/s41467-024-51813-9 Single-Molecule Force Spectroscopy of Toehold-Mediated Strand Displacement] ([https://doi.org/10.1101/2024.01.16.575816 bioRxiv]) | |||
# S. Chandrasekhar, T.P. Swope, F. Fadaei, D.R. Hollis, R. Bricker, D. Houser, J. Portman, T.L. Schmidt, submitted | |||
#: Bending Unwinds DNA ([https://doi.org/10.1101/2024.02.14.579968 bioRxiv]) | |||
# X. Liu, F. Liu, H. Chhabra, C. Maffeo, Q. Huang, A. Aksimentiev, T. Arai, ''Nat. Commun.'' '''15''', 7210 (2024) | |||
#: [https://doi.org/10.1038/s41467-024-51630-0 A lumen-tunable triangular DNA nanopore for molecular sensing and cross-membrane transport] ([https://doi.org/10.21203/rs.3.rs-3878148/v1 ResearchSquare]) | |||
# L. Yang, G. Pecastaings, C. Drummond and J. Elezgaray, ''Nano Lett.'' '''24''', 13481–13486 (2024) | |||
#: [https://doi.org/10.1021/acs.nanolett.4c02302 Driving DNA nanopore membrane insertion through dipolar coupling] | |||
# J.-Y. Liou, M. Awan, K. Leyba, P. Šulc, S. Hofmeyr, C.-J. Wu and S. Forrest, ''ACM Trans. Evol. Learn. Optim.'' accepted (2024) | |||
#: [https://doi.org/10.1145/3703920 Evolving to find optimizations humans miss: Using evolutionary computation to improve GPU code for bioinformatics applications] | |||
# C. Karfusehr, M. Eder, F.C. Simmel | |||
#: Self-assembled cell-scale containers made from DNA origami membranes ([https://doi.org/10.1101/2024.02.09.579479 bioRxiv]) | |||
# M.T. Luu, J.F. Berengut, J.K.D. Singh, K.C.D. Glieze, M. Turner, K. Skipper, S. Meppat, H. Fowler, W. Close, J.P.K. Doye, A. Abbas, S.F.J. Wickham, submitted | |||
#: Reconfigurable multi-component nanostructures built from DNA origami voxels ([https://doi.org/10.1101/2024.03.10.584331 bioRxiv]) | |||
# M.P. Tran, T. Chakraborty, E. Poppleton, L. Monari, F. Giessler and K. Göpfrich, submitted | |||
#: Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells ([https://doi.org/10.1101/2024.06.12.598448 bioRxiv]) | |||
# V. Bukina and A. Božič, ''Biophys. J.'' '''123''', 3397-3407 (2024) | |||
#: [https://doi.org/10.1016/j.bpj.2024.08.004 Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA] ([https://doi.org/10.1101/2024.04.17.589867 bioRxiv]) | |||
# R. Walker-Gibbons, X. Zhu, A. Behjatian, T.J.D. Bennett and M. Krishnan, Sci. Rep. 14, 20582 (2024) | |||
#: [https://doi.org/10.1038/s41598-024-70641-x Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations] | |||
# E.J. Ratajczyk, J. Bath, P. Sulc, J.P.K. Doye, A.A. Louis, A.J. Turberfield, submitted | |||
#: Controlling DNA-RNA strand displacement kinetics with base distribution ([https://doi.org/10.1101/2024.08.06.606789 bioRxiv]) | |||
# A. Suma and C. Micheletti, submitted | |||
#: Unzipping of knotted DNA via nanopore translocation ([https://doi.org/10.48550/arXiv.2407.11567 arXiv]) | |||
# G. Mattiotti, M. Micheloni, L. Petrolli, L. Tubiana, S. Pasquali, R. Potestio, submitted. | |||
#: Molecular dynamics characterization of the free and encapsidated RNA2 of CCMV with the oxRNA model ([https://doi.org/10.48550/arXiv.2408.03662 arXiv]) | |||
# S. Haggenmueller, M. Matthies, M. Sample and P. Šulc, submitted. | |||
#: How we simulate DNA origami ([https://doi.org/10.48550/arXiv.2409.13206 arXiv]) | |||
# Y. Guo, T. Xiong, H. Yan and R.X. Zhang, submitted | |||
#: Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells ([https://doi.org/10.21203/rs.3.rs-4897446/v1 ResearchSquare]) | |||
# R.K. Krueger, M.C. Engel, R. Hausen, M.P. Brenner, submitted (2024) | |||
#: A Differentiable Model of Nucleic Acid Dynamics ([https://arxiv.org/abs/2411.09216 arXiv]) | |||
# Y. Guo, T. Xiong, H. Yan and R.X. Zhang, submitted | |||
#: Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells ([https://doi.org/10.21203/rs.3.rs-4897446/v1 ResearchSquare]) | |||
# K. Zhou, M. Chung, J. Cheng, J.T. Powell, J. Liu, Y. Xiong, M.A. Schwartz and C. Lin, submitted. | |||
#: DNA nanodevice for analysis of force-activated protein extension and interactions ([https://doi.org/10.1101/2024.10.25.620262 bioRxiv]) | |||
# W.-S. Wei, T.E. Videbæk, D. Hayakawa, R. Saha, W.B. Rogers, S. Fraden, submitted | |||
#: Economical and versatile subunit design principles for self-assembled DNA origami structures ([https://doi.org/10.48550/arXiv.2411.09801 arXiv]) | |||
We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. | We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. |
Latest revision as of 13:12, 23 November 2024
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Phys. Condens. Matter. 22, 104102 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
- T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
- F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
- C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
- C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B 116, 1161-11625 (2012)
- P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
- T.E. Ouldridge, J. Chem. Phys. 137, 144105 (2012)
- F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
- T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano 7, 2479-2490 (2013)
- T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res. 41, 8886-8895 (2013)
- J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys 15, 20395-20414 (2013)
- N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res. 41, 10641-10658 (2013)
- P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
- L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
- P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
- L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567-3574 (2014)
- Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
- J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, Nucleic Acids Res. 43, 6181-6190 (2014)
- R. Machinek, T.E. Ouldridge, N.E.C. Haley, J. Bath, A. J. Turberfield, Nature Comm. 5, 5324 (2014)
- M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
- I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ACS Nano 8, 10293–10304 (2014)
- C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
- L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1-8 (2015)
- P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, 26, 084001 (2015)
- F. Romano and F. Sciortino, Phys. Rev. Lett. 114, 078104 (2015)
- J. S. Schreck, T. E. Ouldridge, F. Romano, A. A. Louis, J.P.K. Doye, J. Chem. Phys. 142, 165101 (2015)
- M. Mosayebi, A. A. Louis, J.P.K. Doye, T. E. Ouldridge ACS Nano 9, 11993 (2015)
- T. E. Ouldridge, Mol. Phys. 113, 1-15 (2015)
- P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis, Biophys. J. 108, 1238-1247 (2015)
- B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 142, 234901 (2015)
- C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis, J. Chem. Phys. 143, 243122 (2015)
- Q. Wang, C.G. Myers, and B.M. Pettitt, J. Phys. Chem. B 119, 4937–4943 (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, arXiv (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, J. Chem. Theor. Comput. 15 4660-4672 (2019)
- J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, Science 349, 977-981 (2015)
- B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ACS Nano 10, 1724-1737 (2016)
- V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, Nat. Commun. 7, 10803 (2016)
- J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ACS Nano, 10, 4236-4247 (2016)
- M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ACS Nano, 10, 5882–5890 (2016)
- J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, J. Chem. Phys. 145, 084910 (2016)
- T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, Nucleic Acids Res. 44, 9121-9130 (2016)
- Q. Wang and B.M. Pettitt, J. Phys. Chem. Lett 7, 1042–1046 (2016)
- A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, J. Phys: Condens. Matter 29, 014006 (2017).
- E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ACS Nano 11, 2094-2102 (2017)
- E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, J. Chem. Phys 146, 214902 (2017)
- A. Suma and C. Micheletti, Proc. Natl. Acad. Sci. USA 114, E2991–E2997 (2017)
- Z. Shi, C. E. Castro and G. Arya, ACS Nano 11, 4617–4630 (2017)
- H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, J. Phys. Chem. B 121, 5033–5039 (2017)
- S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, Phys. Chem. Chem. Phys. 19, 14937-14946 (2017)
- A. Henning-Knechtel, J. Knechtel and M. Magzoub, Nucleic Acids Res. 45, 12057–12068 (2017)
- R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ACS Nano 11, 12426–12435 (2017)
- Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, Nanoscale 9, 12142-12149 (2017)
- G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips and G. Seelig, Nat. Nanotechnol. 12, 920–927 (2017)
- Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, Nucleic Acids Res. 45 7633-7642 (2017)
- B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, Nucleic Acids Res. 46, 538-545 (2018)
- R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, Nucleic Acids Res. 46, 1102–1112 (2018)
- D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, Nucleic Acids Res. 46, 1553-1561 (2018)
- P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, J. Chem. Phys 148, 134910 (2018)
- T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, Nucleic Acids Res. 47, 10788–10800 (2019)
- S.R. Tee and Z. Wang, ACS Omega, 3, 292-301 (2018)
- E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, Phys. Rev. Lett. 121, 088101 (2018)
- M.M.C. Tortora and J.P.K. Doye, Mol. Phys. 116, 2773-2791 (2018)
- O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, Eur. Phys. J. E 41, 57 (2018)
- M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ACS Nano 12, 6734-6747 (2018)
- F. Romano and L. Rovigatti, in Design of Self-Assembling Materials (Springer, ed. I. Coluzza) pp 71-90 (2017)
- S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, Phys. Rev. Applied 9, 034025 (2018)
- E. Locatelli and L. Rovigatti, Polymers 10, 447 (2018)
- E. Spruijt, S.E. Tusk and H. Bayley, Nat. Nanotechnol. 13, 739-745 (2018)
- L. Coronel, A. Suma and C. Micheletti, Nucleic Acids Res. 46,7522–7532 (2018)
- E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, Scientific Reports 8, 6989 (2018)
- R. Jin and L. Maibaum, J. Chem. Phys. 150, 105103 (2019)
- F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, Nucleic Acids Res. 46, 7998–8009 (2018)
- E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ACS Nano 12, 9291-9299 (2018)
- S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, Phys. Rev. E 99 032414 (2019).
- B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, Nucleic Acids Res. 47, 1585–1597 (2019).
- N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, Nat. Commun 11, 2562 (2020)
- L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, Small 14, 1802580 (2018)
- R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, J. Phys. Condens. Matter 31, 074003 (2019)
- F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, J. Am. Chem. Soc. 140, 14670–14676 (2018)
- Y. Choi, H. Choi, A.C. Lee, S. Kwon, J. Vis. Exp., e58364 (2018)
- M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, Sci. Adv. 6, eaaw8331 (2020)
- C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, Nanoscale 11, 1647-1660 (2019)
- I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, Small 15, 1803628 (2019)
- M. Coraglio, E. Skoruppa and E. Carlon, J. Chem. Phys. 150, 135101 (2019)
- M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ACS Nano 13 1839-1848 (2019)
- Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
- A Numerical Study of Three-Armed DNA Hydrogel Structures (arXiv)
- W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, Bioconjugate Chem 30, 1850-1859 (2019)
- S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, Phys. Rev. E 100, 022402 (2019)
- A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, Nucleic Acids Res. 48, 4672–4680 (2020)
- J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, Biomolecules 9, 199 (2019)
- A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, J. Comput. Chem. 40, 2586-2595 (2019)
- J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, Nucleic Acids Res. 47, 11963–11975(2019)
- K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, Angew. Chem. Int. Ed. 59, 15942-15946 (2020)
- I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, Soft Matter 16, 990-1001 (2020)
- E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ACS Nano 13, 12591-12598 (2019)
- S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, Anal. Chem. 91, 14808-14811 (2019)
- Z. Shi and G. Arya, Nucleic Acids Research 48, 548-560 (2020)
- E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ACS Synth. Biol. 9, 1682-1692 (2020)
- P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, Nucleic Acids Res. 48, 10713–10725 (2020)
- Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches (bioRxiv)
- K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, J. Am. Chem. Soc 142, 815-825 (2020).
- E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, Nucleic Acids Res. 48, e72 (2020)
- M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7764–7775 (2020).
- C. Bores and B.M. Pettitt, Phys. Rev. E 101, 012406 (2020)
- A. Bader and S.L. Cockroft, Chem. Commun. 56, 5135-5138 (2020)
- J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, Methods in Molecular Biology 2639, 93-112 (2023).
- J. Lee, J.-H. Huh, S. Lee, Langmuir 36, 5118–5125 (2020)
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, Nat. Commun. 12, 501 (2021)
- B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
- Characterising DNA T-motifs by simulation and experiment (arXiv)
- C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, Nat. Mater. 20, 1264–1271 (2021)
- P. Irmisch, T.E. Ouldridge, and R. Seidel, J. Am. Chem. Soc 142, 11451–11463 (2020)
- F. Hong, J.S. Schreck and P. Šulc, Nucleic Acids Res. 48, 10726–10738 (2020).
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, J. Am. Chem. Soc. 142, 12069–12078 (2020)
- H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7748–7763 (2020).
- K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, ACS Nano 15, 7065–7077 (2021)
- E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, Nature 596, 367–371 (2021)
- Y.A.G. Fosado, F. Landuzzi and T. Sakaue, Soft Matter 17, 1530-1537 (2021)
- F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, Langmuir 36, 10387–10396 (2020)
- J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, Small Str. 1, 2000038 (2020)
- G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, Nat. Chem. 12, 1067–1075 (2020)
- J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ACS Nano 14, 17428–17441 (2020)
- J. Procyk, E. Poppleton and P. Šulc, Soft Matter 17, 3586-3593 (2021).
- Z. Sierzega, J. Wereszczynski and C. Prior, Sci. Rep. 11, 1527 (2021)
- E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, Phys. Rev. E 103, 042408 (2021)
- C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, J. Phys. Chem. B 124, 10337–10344 (2020)
- E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, Nanoscale 12, 23003-23012 (2020)
- B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld and T.F.A. de Greef, Nat. Catal. 3, 295–306 (2020)
- R. Li, H. Chen and J.H. Choi, Angew. Chem. Int. Ed. 60, 7165-7173 (2021)
- D. Wang, L. Yu, C.-M. Huang, G. Arya, S. Chang, and Y. Ke, J. Am. Chem. Soc. 143, 2256–2263 (2021)
- R. Li, H. Chen, H. Lee, J. H. Choi, Appl. Sci. 11, 2357 (2021)
- G. Park, M. K. Cho, and Y. Jung, J. Chem. Theory Comput., 17 1308-1317 (2021)
- S. Jonchhe, S. Pandey, D. Karna, P. Pokhrel, Y. Cui, S. Mishra, H. Sugiyama, M. Endo and H. Mao, J. Am. Chem. Soc 142, 10042–10049 (2020)
- R. Li, H. Chen and J. H. Choi, Small 17, 2007069 (2021)
- S. Naskar, P. K. Maiti, J. Mater. Chem. B 9, 5102-5113
- B. Babatunde, S. Arias, J. Cagan and R.E. Taylor, Appl. Sci. 11, 2950 (2021)
- N.M. Gravina, J.C. Gumbart and H.D. Kim, J. Phys. Chem. B 125, 4016–4024 (2021)
- A. Sengar, T.E. Ouldridge, O. Henrich, L. Rovigatti and P. Šulc, Front. Mol. Biosci. 8, 693710 (2021)
- E. Poppleton, R. Romero, A. Mallya, L. Rovigatti and P. Šulc, Nucl. Acids Res. 49 W491–W498 (2021)
- Y. Yamashita, K. Watanabe, S. Murata and I. Kawamata, Chem-Bio Informatics Journal 21, 28-38 (2021)
- E. Benson, R. Carrascosa Marzo, J. Bath, A.J. Turberfield, Small 17, 2007704 (2021)
- Z. Qu, Y.N. Zhang, Z. Dai, Y. Zhang, Y. Hao, J. Shen, F. Wang, Q. Li, C. Fan, X. Liu, Angew. Chem. Int. Ed. 60, 16693-16699 (2021)
- Y. Wang, I. Baars, F. Fördös and B. Högberg, ACS Nano 15 9614–9626 (2021)
- Y. Wang, E. Benson, F. Fördős, M. Lolaico, I. Baars, T. Fang, A.I. Teixeira, B. Högberg, Adv. Mater. 33, 2008457 (2021)
- L. Li, H. Wang, C. Xiong, D. Luo, H. Chen and Y. Liu, J. Phys.: Condens. Matter 33, 185102 (2021)
- J. P. Mahalik and M. Muthukumar, submitted
- Nucleotide Dynamics During Flossing of Polycation-DNA-Polycation through a Nanopore using Molecular Dynamics (bioRxiv)
- N. Li, Y. Liu, Z. Yin, R. Liu, L. Zhang, Y. Zhao, L. Ma, X. Dai, D. Zhou, X. Su, Nano Today 41 101308 (2021)
- Y. Yang, Q. Lu, C.-M. Huang, H. Qian, Y. Zhang, S. Deshpande, G. Arya, Y. Ke, S. Zauscher, Angew. Chem. Int. Ed. 60, 3241-23247 (2021)
- Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, J. Am. Chem. Soc. 143, 13292–13298 (2021)
- T. Lee, S. Do, J.G. Lee, D.-N. Kim and Y. Shin, Nanoscale 13, 17638-17647 (2021)
- Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, Nucleic Acids Res. 49, 8987–8999 (2021)
- F. Liu, X. Liu, Q. Shi, C. Maffeo, M. Kojima, L. Dong, A. Aksimentiev, Q. Huang, T. Fukuda and T. Arai, Nanoscale 13, 15552-15559 (2021)
- J. Appeldorn, S. Lemcke, T. Speck and A. Nikoubashman, J. Phys. Chem. B 126, 5007–5016 (2022).
- H. Jun, X. Wang, M.F. Parsons, W.P. Bricker, T. John, S. Li, S. Jackson, W. Chiu, M. Bathe, Nucleic Acids Res. 49, 10265–10274 (2021)
- C.K. Wong, C. Tang, J.S. Schreck and J.P.K. Doye, Nanoscale 14, 2638–2648 (2022).
- W. Lim, F. Randisi, J.P.K. Doye and A.A. Louis, Nucleic Acids Res. 50, 2480–2492 (2022).
- W.T. Kaufhold, W. Pfeifer, C.E. Castro and L. Di Michele, ACS Nano 16, 8784–8797 (2022).
- H. Su, J.M. Brockman, Y. Duan, N. Sen, H. Chhabra, A. Bazrafshan, A.T. Blanchard, T. Meyer, B. Andrews, J.P.K. Doye, Y. Ke, R.B. Dyer and K. Salaita, J. Am. Chem. Soc. 43, 19466–19473 (2021).
- L. Yang, C. Cullin and J. Elezgaray, ChemPhysChem 23, e202200021 (2022).
- Y. Pan, R. Weng, L. Zhang, J. Qiu, X. Wang, G. Liao, Z. Qin, L. Zhang, H. Xiao, Y. Qian, X. Su, Nano Today 46 101573 (2022).
- X. Wang, S. Li, H. Jun, T. John, K. Zhang, H. Fowler, J.P.K. Doye, W. Chiu and M. Bathe, Sci. Adv. 8, eabn0039 (2022).
- E. Poppleton, A. Mallya, S. Dey, J. Joseph, P. Šulc, Nucleic Acids Res. 50, D246–D252 (2022)
- R. Foffi, F. Sciortino, J. M. Tavares, P. I. C. Teixeira, Soft Matter 17, 10736-10743 (2021)
- J. Yoo, S. Park, C. Maffeo, T. Ha, A. Aksimentiev, Nucleic Acids Res. 49, 11459–11475 (2021).
- E. Lin-Shiao, W.G. Pfeifer, B.R. Shy, M. Saffari Doost, E. Chen, V.S. Vykunta, J.R. Hamilton, E.C. Stahl, D.M. Lopez, C.R. Sandoval Espinoza, A.E. Dejanov, R.J. Lew, M.G. Poirer, A. Marson, C.E. Castro, J.A. Doudna, Nucleic Acids Res. 50, 1256–1268 (2022)
- J.P.K. Doye, A.A. Louis, J.S. Schreck, F. Romano, R.M. Harrison, M. Mosayebi, M.C. Engel, T.E. Ouldridge, in Energy Landscapes of Nanoscale Systems, ed. D.J. Wales, Frontiers of Nanoscience (Elsevier) Vol. 21, Chapter 9, pp 195-210 (2022)
- Y. Deng, Y. Tan, L. Zhang, C. Zhang, X. Su, submitted.
- Forecasting the reaction of DNA modifying enzymes on DNA nanostructures by coarse grained model for stimuli-responsive drug delivery (Research Square)
- D. Smith and G. Tikhomirov, submitted.
- small: A programmatic nanostructure design and modelling environment (arXiv)
- S. Assenza and R. Pérez, J. Chem. Theory Comput 18, 3239–3256 (2022)
- D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, Molecules 27, 63 (2022)
- M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, Nat. Nanotechnol. 19, 226–236 (2024)
- C.K. Wong and J.P.K. Doye, Appl. Sci. 12, 5875 (2022)
- L. Zhang, J. Chen, M. He, X. Su, Exploration 2, 20210265 (2022)
- F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, Entropy 24, 458 (2022)
- Y.A.G. Fosado, Soft Matter 19, 4820-4828 (2023)
- X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, J. Am. Chem. Soc. 144, 4507–4514 (2022)
- L. Liu F. Hong H. Liu X. Zhou S. Jiang P. Šulc J.-H. Jiang and H. Yan, Sci. Adv. 8, eabm9530 (2022)
- Y. Xin, P. Piskunen, A. Suma, C. Li, H. Ijäs, S. Ojasalo, I. Seitz, M.A. Kostiainen, G. Grundmeier, V. Linko and A. Keller, Small 18, 2107393 (2022)
- R.L. Bender, H. Ogasawara, A.V. Kellner, A. Velusamy and K. Salaita, submitted
- Unbreakable DNA tension probes show that cell adhesion receptors detect the molecular force-extension curve of their ligands (bioRxiv)
- E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, Sci. Robot. 7, eabn5459 (2022)
- A. Dutta, K. Tapio, A. Suma, A. Mostafa, Y. Kanehira, V. Carnevale, G. Bussi and I. Bald, Nanoscale 14, 16467-16478 (2022)
- D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, Nucleic Acids Res. 51, 3030–3040 (2023)
- S. Sensale, P. Sharma and G. Arya, Phys. Rev. E 105, 044136 (2022)
- S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka and H. Yan, Nat. Commun. 13, 2271 (2022)
- D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022)
- SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations (arXiv)
- L. Rovigatti, J. Russo, F. Romano, M. Matthies, L. Kroc and P. Sulc, Nanoscale 14, 14268-14275 (2022)
- J. Bohlin, M. Matthies, E. Poppleton, J. Procyk, A. Mallya, H. Yan and P. Šulc, Nat. Protoc. 17, 1762–1788 (2022)
- C. Zhou, D. Yang, S. Sensale, P. Sharma, D. Wang, L. Yu, G. Arya, Y. Ke and P. Wang, Sci. Adv 8, eade3003 (2022)
- R. Li, M. Zheng, A.S. Madhvacharyula, Y. Du, C. Mao and J.H. Choi, Biophys. J. 121, 4078-4090 (2022)
- C. Xie, Y. Hu, Z. Chen, K. Chen and L. Pan, Nanotechnology 33, 405603 (2022)
- F. Fontana, T. Bellini and M. Todisco, Macromolecules 55, 5946–5953 (2022)
- Z. Weng, H. Yu, W. Luo, L. Zhang, Z. Zhang, T. Wang, Q. Liu, Y. Guo, Y. Yang, J. Li, L. Yang, L. Dai, Q. Pu, X. Zhou and G. Xie, Anal. Chim. Acta 1199, 339568 (2022)
- J. Bohlin, A.J. Turberfield, A.A. Louis and P. Šulc, ACS Nano 17, 5387–5398 (2023)
- Y. Deng, Y. Tan, Y. Zhang, L. Zhang, C. Zhang, Y. Ke and X. Su, ACS Appl. Mater. Interfaces 14, 34470–34479 (2022)
- J. G. Lee, K. S. Kim, J. Y. Lee and D.-N. Kim, ACS Nano 16, 4289–4297 (2022)
- M. Micheloni, L. Petrolli, G. Lattanzi and R. Potestio, Biophys. J. 122, 3314-3322 (2023)
- A. Elonen, A.K. Natarajan, I. Kawamata, L. Oesinghaus, A. Mohammed, J. Seitsonen, Y. Suzuki, F. C. Simmel, A. Kuzyk and P. Orponen, ACS Nano 16, 16608–16616 (2022)
- D. Fu, R.P. Narayanan, A. Prasad, F. Zhang, D. Williams, J.S. Schreck, H. Yan and J. Reif, Sci. Adv. 8, ade4455 (2022)
- N. Chauhan, Y. Xiong, S. Ren, A. Dwivedy, N. Magazine, L. Zhou, X. Jin, T. Zhang, B.T. Cunningham, S. Yao, W. Huang and X. Wang, J. Am. Chem. Soc. 145, 20214–20228 (2023)
- A. Mills, N. Aissaoui, D. Maurel, J. Elezgaray, F. Morvan, J. J. Vasseur, E. Margeat, R.B. Quast, J. Lai Kee-Him, N. Saint, C. Benistant, A. Nord, F. Pedaci and G. Bellot, Nat. Commun. 13, 3182 (2022)
- T. Panczyk, K. Nieszporek and P. Wolski, Molecules 27, 4915 (2022)
- E.E. Kurisinkal, V. Caroprese, M.M. Koga, D. Morzy and M.M.C. Bastings, Molecules 27 4968 (2022)
- R.P. Narayanan, J. Procyk, P. Nandi, A. Prasad, Y. Xu, E. Poppleton, D. Williams, F. Zhang, H. Yan, P.-L. Chiu, N. Stephanopoulos and P. Šulc, ACS Nano 16, 14086–14096 (2022)
- J. Wang, Y. Wei, P. Zhang, Y. Wang, Q. Xia, X. Liu, S. Luo, J. Shi, J. Hu, C. Fan, B. Li, L. Wang, X. Zhou and J. Li, Nano Lett. 22, 7173–7179 (2022)
- S. Li, Y. Coffinier, C. Lagadec, F. Cleri, K. Nishiguchi, A. Fujiwara, T. Fujii, S.-H. Kim and N.Clément, Biosens. Bioelectron. 216, 114643 (2022)
- S. Bianco, T. Hu, O. Henrich and S. W.Magennis, Biophysical Reports 2, 100070 (2022)
- Y. Li, C. Maffeo, H. Joshi, A. Aksimentiev, B. Ménard and R. Schulman, Sci. Adv. 8, eabq4834 (2022)
- G. Kloes, T.J.D. Bennett, A. Chapet-Batlle, A. Behjatian, A.J. Turberfield and M. Krishnan, Nano Lett. 22, 7834–7840 (2022)
- L. Guo, Y. Zhang, Y. Wang, M. Xie, J. Dai, Z. Qu, M. Zhou, S. Cao, J. Shi, L. Wang, X. Zuo, C. Fan and J. Li, Angew. Chem. Int. Ed. 61, e202117168 (2022)
- N. Xie, M. Li, Y. Wang, H. Lv, J. Shi, J. Li, Q. Li, F. Wang and C. Fan, J. Am. Chem. Soc. 144, 9479–9488 (2022)
- E. Lattuada, T. Pietrangeli and F. Sciortino, J. Chem. Phys. 157, 135101 (2022)
- X. Chen, Y. Wang, X. Dai, L. Ding, J. Chen, G. Yao, X. Liu, S. Luo, J. Shi, L. Wang, R. Nechushtai, E. Pikarsky, I. Willner, C. Fan, and J. Li, J. Am. Chem. Soc. 144, 6311–6320 (2022)
- Q. Kou, L. Wang, L. Zhang, L. Ma, S. Fu and X. Su, Small 18, 2205191 (2022)
- P. E. Beshay, A. Kucinic, N. Wile, P. Halley, L. Des Rosiers, A. Chowdhury, J. L. Hall, C. E. Castro and M. W. Hudoba, The Biophysicist 4, 68–81 (2023)
- A. Büchl, E. Kopperger, M. Vogt, M. Langecker, F.C.Simmel and J. List, Biophys. J. 121, 4849-4859 (2022)
- E. Poppleton, M. Matthies, D. Mandal, F. Romano, P. Šulc and L. Rovigatti, J. Open Source Softw. 8, 4693 (2023)
- A. Suma, V. Carnevale and C. Micheletti, Phys. Rev. Lett. 130, 048101 (2023)
- Y. Tang, H. Liu, Q. Wang, X. Qi, L. Yu, P. Šulc, F. Zhang, H. Yan and S. Jiang, J. Am. Chem. Soc. 145, 25, 13858–13868 (2023)
- M. DeLuca, W.G. Pfeifer, B. Randoing, C.-M. Huang, M.G. Poirier, C.E. Castro and G. Arya, Nanoscale 15, 8356-8365 (2023)
- T. Liang, C. Yang, X. Song, Y. Feng, Y. Liu and H. Chen, Phys. Rev. E 108, 014406 (2023)
- D. Lysne, T. Hachigian, C. Thachuk, J. Lee and E. Graugnard J. Am. Chem. Soc. 145, 16691–16703 (2023)
- A. Kucinic, C.-M. Huang, J. Wang, H.-J. Su and C.E. Castro, Nanoscale, 15 562-572 (2023)
- Y. Zhang, X. Yin, C. Cui, K. He, F. Wang, J. Chao, T. Li, X. Zuo, A. Li, L. Wang, N. Wang, X. Bo and C. Fan, Sci. Adv. 9, adf8263 (2023)
- W.G. Pfeifer, C.-M. Huang, M. G. Poirier, G. Arya and C. E. Castro, Sci. Adv. 9, adi0697 (2023)
- M. Lolaico, S. Blokhuizen, B. Shen, Y. Wang, and B. Högberg, ACS Nano 17, 6565–6574 (2023)
- Y. Wang, A. Kucinic, L. Des Rosiers, P.E. Beshay, N. Wile, M.W. Hudoba and C.E. Castro, Appl. Sci. 13, 3208 (2023)
- D. Morzy, C. Tekin, V. Caroprese, R. Rubio-Sánchez, L. Di Michele and M.M.C. Bastings, Nanoscale 15, 2849-2859 (2023)
- L. Zhang, H. Zhao, H. Yang and X. Su, Biosens. Bioelectron. 239, 115622 (2023)
- Y.-P. Qiao, C.-L. Ren and Y.-Q. Ma J. Phys. Chem. B 127, 4015–4021 (2023)
- K. Cervantes-Salguero, Y.A. Gutiérrez Fosado, W. Megone, J.E. Gautrot and M. Palma, Molecules 28, 3686 (2023)
- H.L. Too and Z. Wang, Nanoscale 15, 11915-11926 (2023)
- D. Saliba, X. Luo, F.J. Rizzuto and H.F. Sleiman, Nanoscale 15, 5403-5413 (2023)
- J. Lee and S. Lee, Anal. Chem. 95, 1856–1866 (2023)
- X. Shen, Q. Ouyang, H. Tan, J. Ouyang and N. Na, Anal. Chem. 95, 5903–5910 (2023)
- L. Tang, M. Huang, M. Zhang, Y. Pei, Y. Liu, Y. Wei, C. Yang, T. Xie, D. Zhang, R. Zhou, Y. Song, J. Song, Small Methods 7, 2300327 (2023)
- Z. Zheng, S.H. Kim, A. Chovin, N. Clement and C. Demaille, Chem. Sci. 14, 3652-3660 (2023)
- M. Vogt, M. Langecker, M. Gouder, E. Kopperger, F. Rothfischer, F.C. Simmel and J. List, Nature Physics 19, 741–751 (2023)
- C. Xie, Y. Hu, K. Chen, Z. Chen and L. Pan, Commun. Comput. Inf. Sci., 1801, 647–654 (2023)
- S. Yu, J. Zhao, R. Chu, X. Li, G. Wu and X. Meng, Entropy 25, 796 (2023)
- I. Madrid, Z. Zheng, C. Gerbelot, A. Fujiwara, S. Li, S. Grall, K. Nishiguchi, S.H. Kim, A. Chovin, C. Demaille and N. Clement, ACS Nano 17, 17031–17040 (2023)
- Y. Ma, W. Guo, Q. Mou, X. Shao, M. Lyu, V. Garcia, L. Kong, W. Lewis, C. Ward, Z. Yang, X. Pan, S.S. Yi and Y. Lu, Nat. Biotechnol. (2023)
- X. Luo, D. Saliba, T. Yang, S. Gentile, K. Mori, P.I. Garcia, T. Das, N. Bagheri, A. Porchetta, A. Guarne, G. Cosa, H.F. Sleiman, Angew. Chem. Int. Ed. 62 e202309869 (2023)
- Y. Zhao, S. Cao, Y. Wang, F. Li, L. Lin, L. Guo, F. Wang, J. Chao, X. Zuo, Y. Zhu, L. Wang, J. Li and C. Fan, Nat. Mach. Intell. 5, 980–990 (2023)
- X.R. Liu, I.Y. Loh, W. Siti, H.L. Too, T. Anderson and Z. Wang, Nanoscale Horiz., 8, 827-841 (2023)
- H. Lv, N. Xie, M. Li, M. Dong, C. Sun, Q. Zhang, L. Zhao, J. Li, X. Zuo, H. Chen, F. Wang and C. Fan, Nature 622, 292–300(2023).
- C. Yang, X. Song, Y. Feng, G. Zhao, and Y. Liu, J. Phys.: Condens. Matter 35, 265101 (2023)
- Xiaoya Song, Chao Yang, Yuyu Feng, Hu Chen, and Yanhui Liu, Commun. Theor. Phys. 75, 055601 (2023)
- W. Siti, H.L. Too, T. Anderson, X.R. Liu, I.Y. Loh and Z. Wang, Sci. Adv. 9, adi8444 (2023)
- R. Ma, A. Velusamy, S.A. Rashid, B.R. Deal, W. Chen, B. Petrich, R. Li, K. Salaita, Nat. Methods 20, 1666–1671 (2023)
- D. Karna, E. Mano, J. Ji, I. Kawamata, Y. Suzuki and H. Mao, Nat. Commun. 14, 6459 (2023)
- J. Fu, L. Zhang, Y. Long, Z. Liu, G. Meng, H. Zhao, X. Su and S. Shi, Anal. Chem. 95, 16089–16097 (2023)
- Y. Yang, Q. Lu, Y. Chen, M. DeLuca, G. Arya, Y. Ke and S. Zauscher, Angew. Chem. Int. Ed. 62, e202311727 (2023)
- J.Y. Lee, H. Koh and D.-N. Kim, Nat. Commun. 14, 7079 (2023)
- M.C. Engel, J.A. Smith and M.P. Brenner, Phys. Rev. X 13, 041032 (2023)
- L. Yu, Y. Xu, M. Al-Amin, S. Jiang, M. Sample, A. Prasad, N. Stephanopoulos, P. Šulc, and H. Yan, J. Am. Chem. Soc. 145, 27336–27347 (2023)
- Y.-P. Qiao and C.-L. Ren, Langmuir 40, 109–117 (2024)
- L. Kilwing, P. Lill, B. Nathwani, R. Guerra, E. Benson, T. Liedl and W. M. Shih, ACS Nano 18, 885–893 (2024)
- N. Adžić, C. Jochum, C. N. Likos, E. Stiakakis, Small, 20, 2308763 (2024)
- A. Velusamy, R. Sharma, S.A. Rashid, H. Ogasawara and K. Salaita, Nat. Commun. 15, 704 (2024)
- Y. Liu, B. Li, F. Wang, Q. Li, S. Jia, X. Liu, and M. Li, ACS Appl. Bio Mater. 7, 1311–1316 (2024)
- S. He, H. Deng, P. Li, Q. Tian, Y. Yang, J. Hu, H. Li, T. Zhao, H. Ling, Y. Liu, S. Liu and Q. Guo, J. Nanobiotechnol. 22, 39 (2024)
- Bimodal DNA self-origami material with nucleic acid function enhancement
- B. Babatunde, J. Cagan, R.E. Taylor, J. Mech. Des. 146, 051708 (2024)
- A.S.G. Martins, S.D. Reis, E. Benson, M.M. Domingues, J. Cortinhas, J.A. Vidal Silva, S.D. Santos, N.C. Santos, A.P. Pêgo, P.M.D. Moreno, Small 20, 2309140 (2024)
- S Dey, R. Rivas-Barbosa, F. Sciortino, E. Zaccarelli and P. Zijlstra, Nanoscale 16, 4872-4879 (2024)
- T. Chen, S. Mao, J. Ma, X. Tang, R. Zhu, D. Mao, X. Zhu, Q. Pan, Angew. Chem. Int. Ed 63, e202319117 (2024)
- Y. Liu, Z. Dai, X. Xie, B. Li, S. Jia, Q. Li, M. Li, C. Fan and X. Liu, J. Am. Chem. Soc. 146, 8, 5461–5469 (2024)
- Z. Zheng, S. Grall, S.H. Kim, A. Chovin, N. Clement and C. Demaille, J. Am. Chem. Soc. 146, 9, 6094–6103 (2024)
- M. Sample, M. Matthies and P. Šulc, ACS Nano 18, 30004–30016 (2024)
- M. Sample, M. Matthies and P. Šulc, 2023 Winter Simulation Conference (WSC), San Antonio, TX, USA, pp. 91-105 (2023)
- V. Caroprese, C. Tekin, V. Cencen, M. Mosayebi, T.B. Liverpool, D.N. Woolfson, G. Fantner, M.M.C. Bastings, submitted
- Structural flexibility dominates over binding strength for supramolecular crystallinity (bioRxiv)
- C. Shi, D. Yang, X.Ma, L. Pan, Y. Shao, G. Arya, Y. Ke, C. Zhang, F. Wang, X. Zuo, M. Li and P. Wang, Angew. Chem. Int. Ed. 63 e202320179 (2024)
- F. Smith, A. Sengar, G.‐B.V. Stan, T.E. Ouldridge, M. Stevens, J. Goertz and W. Bae, submitted
- Overcoming the speed limit of four‐way DNA branch migration with bulges in toeholds (bioRxiv)
- K. Gallagher, J. Yu, D.A. King, R. Liu, E. Eiser, APL Mater. 11, 061129 (2023)
- G.B.M. Wisna, D. Sukhareva, J. Zhao, D. Satyabola, M. Matthies, S. Roy, P. Šulc, H. Yan and R.F. Hariadia, submitted
- High-speed 3D DNA-PAINT and unsupervised clustering for unlocking 3D DNA origami cryptography (bioRxiv)
- H. Koh, J.Y. Lee, J.G. Lee, submitted
- Forming superhelix of double stranded DNA from local deformation (arXiv)
- N.P. Agarwal and A. Gopinath, submited
- DNA origami 2.0 (bioRxiv)
- J.M. Weck and A. Heuer-Jungemann, submitted
- Fully addressable, designer superstructures assembled from a single modular DNA origami (bioRxiv)
- Y. Xu, R. Zheng, A. Prasad, M. Liu, Z. Wan, X. Zhou, R.M. Porter, M. Sample, E. Poppleton, J. Procyk, H. Liu, Y. Li, S. Wang, H. Yan, P. Sulc, N. Stephanopoulos, submitted
- High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody (bioRxiv)
- H. Liu, M. Matthies, J. Russo, L. Rovigatti, R.P. Narayanan, T. Diep, D. McKeen, O. Gang, N. Stephanopoulos, F. Sciortino, H. Yan, F. Romano and P. Šulc, Science 384, 776-781 (2024)
- L. Grabenhorst, M. Pfeiffer, T. Schinkel, M. Kümmerlin, J.B. Maglic, G.A. Brüggenthies, F. Selbach, A.T. Murr, P. Tinnefeld, V. Glembockyte, Nat. Nanotechnol. accepted (2024)
- F. Tosti Guerra, E. Poppleton, P. Šulc, L. Rovigatti, submitted
- nNxB: a new coarse-grained model for RNA and DNA nanotechnology (arXiv)
- E.J. Ratajczyk, P. Šulc, A.J. Turberfield, J.P.K. Doye and A.A. Louis, J. Chem. Phys. 160, 115101 (2024)
- M. DeLuca, D. Duke, T. Ye, M. Poirier, Y. Ke, C. Castro and G. Arya, Nat. Commun. 15, 3015 (2024)
- S. Cristofaro, L. Querciagrossa, L. Soprani, T.P. Fraccia, T. Bellini, R. Berardi, A. Arcioni, C. Zannoni, L. Muccioli, and S. Orlandi, Biomacromolecules 25, 3920–3929 (2024)
- A. Velusamy, R. Sharma, S.A. Rashid, H. Ogasawara and K. Salaita, Nat. Commun. 15, 704 (2024)
- A. Voorspoels, J. Gevers, S. Santermans, N. Akkan, K. Martens, K. Willems, P. Van Dorpe, and A.S. Verhulst, J. Phys. Chem. A 128, 3926–3933 (2024)
- F. Tosti Guerra, E. Poppletoni, P. Šulc and L. Rovigatti, J. Chem. Phys. 160, 205102 (2024)
- Y. Wang, I. Baars, I. Berzina, I. Rocamonde-Lago, B. Shen, Y. Yang, M. Lolaico, J. Waldvogel, I. Smyrlaki, K. Zhu, R.A. Harris and B. Högberg, Nat. Nanotechnol. 19, 1366–137 (2024)
- W. Ji, X. Xiong, M. Cao, Y. Zhu, L. Li, F. Wang, C. Fan and H. Pei, Nat. Chem. 16, 1408–1417 (2024)
- M. van Galen, A. Bok, T. Peshkovsky, J. van der Gucht, B. Albada and J. Sprakel, Nat. Chem. accepted (2024)
- Y. Hu, J. Rogers, Y. Duan, A. Velusamy, S. Narum, S. Al Abdullatif and K. Salaita, Nat. Nanotechnol. 19, 1674–1685 (2024)
- D. Svenšek, J. Sočan and M. Praprotnik, Macromol. Rapid Commun. accepted 2400382 (2024)
- M. Mogheiseh and R.H. Ghasemi, J. Chem. Phys. 161, 045101 (2024)
- S.H. Wong, S.N. Kopf, V. Caroprese, Y. Zosso, D. Morzy, M.M.C. Bastings, Nano Lett. 24, 11210–11216 (2024)
- G. Nava, T. Carzaniga, L. Casiraghi, E. Bot, G. Zanchetta, F. Damin, M. Chiari, G. Weber, T. Bellini, L. Mollica and M. Buscaglia, Nucl. Acids Res. 52, 8661–8674 (2024)
- Y. Du, R. Li, A.S. Madhvacharyula, A.A. Swett, J.H. Choi, submitted
- DNA nanostar structures with tunable auxetic properties (bioRxiv)
- G.M. Roozbahani, P. Colosi, A. Oravecz, E.M. Sorokina, W. Pfeifer, S. Shokri, Y. Wei, P. Didier, M. DeLuca, G. Arya, L. Tora, M. Lakadamyali, M.G. Poirier, C. E. Castro
- Piggybacking functionalized DNA nanostructures into live cell nuclei (bioRxiv)
- A. Walbrun, T. Wang, M. Matthies, P. Šulc, F.C. Simmel, M. Rief, Nat. Commun. 15, 7564 (2024)
- S. Chandrasekhar, T.P. Swope, F. Fadaei, D.R. Hollis, R. Bricker, D. Houser, J. Portman, T.L. Schmidt, submitted
- Bending Unwinds DNA (bioRxiv)
- X. Liu, F. Liu, H. Chhabra, C. Maffeo, Q. Huang, A. Aksimentiev, T. Arai, Nat. Commun. 15, 7210 (2024)
- L. Yang, G. Pecastaings, C. Drummond and J. Elezgaray, Nano Lett. 24, 13481–13486 (2024)
- J.-Y. Liou, M. Awan, K. Leyba, P. Šulc, S. Hofmeyr, C.-J. Wu and S. Forrest, ACM Trans. Evol. Learn. Optim. accepted (2024)
- C. Karfusehr, M. Eder, F.C. Simmel
- Self-assembled cell-scale containers made from DNA origami membranes (bioRxiv)
- M.T. Luu, J.F. Berengut, J.K.D. Singh, K.C.D. Glieze, M. Turner, K. Skipper, S. Meppat, H. Fowler, W. Close, J.P.K. Doye, A. Abbas, S.F.J. Wickham, submitted
- Reconfigurable multi-component nanostructures built from DNA origami voxels (bioRxiv)
- M.P. Tran, T. Chakraborty, E. Poppleton, L. Monari, F. Giessler and K. Göpfrich, submitted
- Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells (bioRxiv)
- V. Bukina and A. Božič, Biophys. J. 123, 3397-3407 (2024)
- R. Walker-Gibbons, X. Zhu, A. Behjatian, T.J.D. Bennett and M. Krishnan, Sci. Rep. 14, 20582 (2024)
- E.J. Ratajczyk, J. Bath, P. Sulc, J.P.K. Doye, A.A. Louis, A.J. Turberfield, submitted
- Controlling DNA-RNA strand displacement kinetics with base distribution (bioRxiv)
- A. Suma and C. Micheletti, submitted
- Unzipping of knotted DNA via nanopore translocation (arXiv)
- G. Mattiotti, M. Micheloni, L. Petrolli, L. Tubiana, S. Pasquali, R. Potestio, submitted.
- Molecular dynamics characterization of the free and encapsidated RNA2 of CCMV with the oxRNA model (arXiv)
- S. Haggenmueller, M. Matthies, M. Sample and P. Šulc, submitted.
- How we simulate DNA origami (arXiv)
- Y. Guo, T. Xiong, H. Yan and R.X. Zhang, submitted
- Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells (ResearchSquare)
- R.K. Krueger, M.C. Engel, R. Hausen, M.P. Brenner, submitted (2024)
- A Differentiable Model of Nucleic Acid Dynamics (arXiv)
- Y. Guo, T. Xiong, H. Yan and R.X. Zhang, submitted
- Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells (ResearchSquare)
- K. Zhou, M. Chung, J. Cheng, J.T. Powell, J. Liu, Y. Xiong, M.A. Schwartz and C. Lin, submitted.
- DNA nanodevice for analysis of force-activated protein extension and interactions (bioRxiv)
- W.-S. Wei, T.E. Videbæk, D. Hayakawa, R. Saha, W.B. Rogers, S. Fraden, submitted
- Economical and versatile subunit design principles for self-assembled DNA origami structures (arXiv)
We are also maintaining a list of all published papers using oxDNA at publons.